
Chapter 6

Intermediate Code Generation

By Varun Arora

Outline
 Variants of Syntax Trees

 Three-address code

 Types and declarations

 Translation of expressions

 Type checking

 Control flow

 Backpatching

By Varun Arora

Introduction
 Intermediate code is the interface between front end

and back end in a compiler

 Ideally the details of source language are confined to
the front end and the details of target machines to the
back end (a m*n model)

 In this chapter we study intermediate representations,
static type checking and intermediate code generation

Parser
Static

Checker
Intermediate

Code Generator
Code

Generator

Front end Back end
By Varun Arora

Variants of syntax trees
 It is sometimes beneficial to crate a DAG instead of

tree for Expressions.
 This way we can easily show the common sub-

expressions and then use that knowledge during code
generation

 Example: a+a*(b-c)+(b-c)*d

+

+ *

*

-

b c

a

d

By Varun Arora

SDD for creating DAG’s

1) E -> E1+T

2) E -> E1-T

3) E -> T

4) T -> (E)

5) T -> id

6) T -> num

Production Semantic Rules

E.node= new Node(‘+’, E1.node,T.node)

E.node= new Node(‘-’, E1.node,T.node)

E.node = T.node

T.node = E.node

T.node = new Leaf(id, id.entry)

T.node = new Leaf(num, num.val)

Example:
1) p1=Leaf(id, entry-a)

2) P2=Leaf(id, entry-a)=p1

3) p3=Leaf(id, entry-b)

4) p4=Leaf(id, entry-c)

5) p5=Node(‘-’,p3,p4)

6) p6=Node(‘*’,p1,p5)

7) p7=Node(‘+’,p1,p6)

8) p8=Leaf(id,entry-b)=p3

9) p9=Leaf(id,entry-c)=p4

10) p10=Node(‘-’,p3,p4)=p5

11) p11=Leaf(id,entry-d)

12) p12=Node(‘*’,p5,p11)

13) p13=Node(‘+’,p7,p12)
By Varun Arora

Value-number method for
constructing DAG’s

 Algorithm

 Search the array for a node M with label op, left child l
and right child r

 If there is such a node, return the value number M

 If not create in the array a new node N with label op, left
child l, and right child r and return its value

 We may use a hash table

=

+

10i

id To entry for i
num 10
+ 1 2
3 1 3

By Varun Arora

Three address code
 In a three address code there is at most one operator at

the right side of an instruction

 Example:

+

+ *

*

-

b c

a

d

t1 = b – c

t2 = a * t1

t3 = a + t2

t4 = t1 * d

t5 = t3 + t4

By Varun Arora

Forms of three address
instructions
 x = y op z

 x = op y

 x = y

 goto L

 if x goto L and ifFalse x goto L

 if x relop y goto L

 Procedure calls using:

 param x

 call p,n

 y = call p,n

 x = y[i] and x[i] = y

 x = &y and x = *y and *x =y

By Varun Arora

Example
 do i = i+1; while (a[i] < v);

L: t1 = i + 1

i = t1

t2 = i * 8

t3 = a[t2]

if t3 < v goto L

Symbolic labels

100: t1 = i + 1

101: i = t1

102: t2 = i * 8

103: t3 = a[t2]

104: if t3 < v goto 100

Position numbers

By Varun Arora

Data structures for three
address codes
 Quadruples

 Has four fields: op, arg1, arg2 and result

 Triples

 Temporaries are not used and instead references to
instructions are made

 Indirect triples

 In addition to triples we use a list of pointers to triples

By Varun Arora

Example
 b * minus c + b * minus c

t1 = minus c

t2 = b * t1

t3 = minus c

t4 = b * t3

t5 = t2 + t4

a = t5

Three address code

minus
*

minus c t3
*
+

=

c t1
b t2t1

b t4t3

t2 t5t4

t5 a

arg1 resultarg2op

Quadruples

minus
*

minus c

*
+

=

c
b (0)

b (2)

(1) (3)

a

arg1 arg2op

Triples

(4)

0
1
2

3
4

5

minus
*

minus c

*
+

=

c
b (0)

b (2)

(1) (3)

a

arg1 arg2op

Indirect Triples

(4)

0
1
2

3
4

5

(0)
(1)

(2)

(3)
(4)

(5)

op
35
36
37

38
39

40

By Varun Arora

Type Expressions
Example: int[2][3]

array(2,array(3,integer))

 A basic type is a type expression

 A type name is a type expression

 A type expression can be formed by applying the array type
constructor to a number and a type expression.

 A record is a data structure with named field

 A type expression can be formed by using the type constructor g for
function types

 If s and t are type expressions, then their Cartesian product s*t is a
type expression

 Type expressions may contain variables whose values are type
expressions

By Varun Arora

Type Equivalence

 They are the same basic type.

 They are formed by applying the same constructor to
structurally equivalent types.

 One is a type name that denotes the other.

By Varun Arora

Declarations

By Varun Arora

Storage Layout for Local Names
 Computing types and their widths

By Varun Arora

Storage Layout for Local Names
 Syntax-directed translation of array types

By Varun Arora

Sequences of Declarations

 Actions at the end:

By Varun Arora

Fields in Records and Classes

By Varun Arora

Translation of Expressions and
Statements
 We discussed how to find the types and offset of

variables

 We have therefore necessary preparations to discuss
about translation to intermediate code

 We also discuss the type checking

By Varun Arora

Three-address code for expressions

By Varun Arora

Incremental Translation

By Varun Arora

Addressing Array Elements
 Layouts for a two-dimensional array:

By Varun Arora

Semantic actions for array reference

By Varun Arora

Translation of Array References

Nonterminal L has three synthesized
attributes:

L.addr

L.array

L.type

By Varun Arora

Conversions between primitive
types in Java

By Varun Arora

Introducing type conversions into
expression evaluation

By Varun Arora

Abstract syntax tree for the
function definition

fun length(x) =

if null(x) then 0 else length(tl(x)+1)

This is a polymorphic function

in ML language

By Varun Arora

Inferring a type for the function length

By Varun Arora

Algorithm for Unification

By Varun Arora

Unification algorithm
boolean unify (Node m, Node n) {

s = find(m); t = find(n);
if (s = t) return true;
else if (nodes s and t represent the same basic type) return true;
else if (s is an op-node with children s1 and s2 and

t is an op-node with children t1 and t2) {
union(s , t) ;
return unify(s1, t1) and unify(s2, t2);

}
else if s or t represents a variable {

union(s, t) ;
return true;

}
else return false;

}
By Varun Arora

Control Flow

boolean expressions are often used to:

Alter the flow of control.

Compute logical values.

By Varun Arora

Short-Circuit Code

By Varun Arora

Flow-of-Control Statements

By Varun Arora

Syntax-directed definition

By Varun Arora

Generating three-address code for booleans

By Varun Arora

translation of a simple if-statement

By Varun Arora

Backpatching
 Previous codes for Boolean expressions insert symbolic labels for

jumps
 It therefore needs a separate pass to set them to appropriate addresses
 We can use a technique named backpatching to avoid this
 We assume we save instructions into an array and labels will be indices

in the array
 For nonterminal B we use two attributes B.truelist and B.falselist

together with following functions:
 makelist(i): create a new list containing only I, an index into the array

of instructions
 Merge(p1,p2): concatenates the lists pointed by p1 and p2 and returns a

pointer to the concatenated list
 Backpatch(p,i): inserts i as the target label for each of the instruction

on the list pointed to by p

By Varun Arora

Backpatching for Boolean Expressions

By Varun Arora

Backpatching for Boolean Expressions

 Annotated parse tree for x < 100 || x > 200 && x ! = y

By Varun Arora

Flow-of-Control Statements

By Varun Arora

Translation of a switch-statement

By Varun Arora

Readings
 Chapter 6 of the book

By Varun Arora

