
STRUCTURE QUERY LANGUAGE

UNIT – III

Reference:

✓ SQL and PL/SQL Using ORACLE by Ivan Bayross

✓ Oracle 11g with PL/SQL Approach by Sham Tickoo & Sunil Raina
✓ SQL and PL/SQL for Oracle 11g (BLACK BOOK) by Dr. P.S. Deshpande

Structured Query Language

• SQL (Structured Query Language) is a database sub-language for
querying and modifying relational databases.

• It was developed by IBM Research in the mid 70's and standardized
by ANSI in 1986.

• Relational Model defines two root languages for accessing a
relational database -- Relational Algebra and Relational Calculus.

• Relational Algebra is a low-level, operator-oriented language.
Creating a query in Relational Algebra involves combining relational
operators using algebraic notation.

• Relational Calculus is a high-level, declarative language. Creating a
query in Relational Calculus involves describing what results are
desired.

SQL is a version of Relational Calculus. The basic structure in SQL is
the statement. Semicolons separate multiple SQL statements.

Functions of a DBMS
• Data definition: SQL lets a user define the structure and organization of the

stored data and relationships among the stored data items.

• Data retrieval: SQL allows a user or an application program to retrieve
stored data from the database and use it.

• Data manipulation: SQL allows a user or an application program to update
the database by adding new data, removing old data, and modifying
previously stored data.

• Access control: SQL can be used to restrict a user’s ability to retrieve, add,
and modify data, protecting stored data against unauthorized access.

• Data sharing: SQL is used to coordinate data sharing by concurrent users,
ensuring that they do not interfere with one another.

• Data integrity: SQL defines integrity constraints in the database, protecting
it from corruption due to inconsistent updates or system failures.

• SQL is thus a comprehensive language for controlling and interacting with a
database management system.

Characteristics of SQL

SQL is both an easy-to-understand language and a comprehensive
tool for managing data. Here are some of the major features of SQL
and the market forces that have made it successful:

• Vendor independence

• Relational foundation

• High-level, English-like structure

• Interactive, ad hoc queries

• Programmatic database access

• Multiple views of data

• Complete database language

Datatype Specification Remarks

Char CHAR(SIZE) 255 characters

Varchar2 Vharchar2(Size) 4000 bytes

Varchar Varchar(Size) 2000 bytes

Date Date Stores year, month,hour

Number Number(Size) 10126 To 10-130

SQL Common Data Types

Types of SQL commands

SQL statements are often divided into three categories:
• DDL (Data Definition Language)

• DML (Data Manipulation Language)

• TCL (Transaction Control Language)

DDL (Data Definition Language)

DDL (Data Definition Language). These SQL statements
define the structure of a database, including rows,
columns, tables, indexes, and database specifics such as
file locations. DDL SQL statements are more part of the
DBMS and have large differences between the SQL
variations. DML SQL commands include the following:

• CREATE to make a new database, table, index, or stored query.

• DROP to destroy an existing database, table, index, or view.

• ALTER to modify the structure of a Database/ database Objects

DML (Data Manipulation Language)

• These SQL statements are used to retrieve and manipulate data. This
category encompasses the most fundamental commands including DELETE,
INSERT, SELECT, and UPDATE. DML SQL statements have only minor
differences between SQL variations. DML SQL commands include the
following:

• DELETE to remove rows.

• INSERT to add a row.

• SELECT to retrieve row.

• UPDATE to change data in specified columns.

TCL (Transaction Control Language)

Transaction Control (TCL) statements are used to manage
the changes made by DML statements. It allows
statements to be grouped together into logical
transactions.

• COMMIT - save work done

• SAVEPOINT - identify a point in a transaction to which you can
later roll back

• ROLLBACK - restore database to original since the last COMMIT

• SET TRANSACTION - Change transaction options like isolation level
and what rollback segment to use

Tables

• In SQL2, can use the CREATE TABLE command for specifying
the primary key attributes, secondary keys, and referential
integrity constraints (foreign keys).

• Key attributes can be specified via the PRIMARY KEY and
UNIQUE phrases
CREATE TABLE DEPT (

DNAME VARCHAR(10)NOT NULL,

DNUMBER NUMBER NOT NULL,

Name CHAR(9),Post CHAR(20),

PRIMARY KEY (DNUMBER),

UNIQUE (DNAME));

DROP TABLE

• Used to remove a relation (base table) and its
definition

• The relation can no longer be used in queries,
updates, or any other commands since its
description no longer exists

• Example:

Syntax: DROP TABLE <tablename>;

Example :DROP TABLE STUDENT;

ALTER TABLE

• Used to add an attribute to one of the base relations
• The new attribute will have NULLs in all the tuples of the

relation right after the command is executed; hence, the NOT
NULL constraint is not allowed for such an attribute

• Example:
ALTER TABLE EMPLOYEE ADD JOB VARCHAR(12);

• The database users must still enter a value for the new
attribute JOB for each EMPLOYEE tuple.

• This can be done using the UPDATE command.

ALTER TABLE

• Used to remove an attribute from the relation.
Syntax: ALTER TABLE <table name> DROP COLUMN <column name >

Example: ALTER TABLE studemt DROP COLUMN contact_no;

MODIFYING EXISTING COLUMNS

Syntax: ALTER TABLE<table name> MODIFY (<Column name> <new datatype>
(<new size>));

Example :ALTER TABLE student MODIFY (Name Varchar2(30));

Displaying the Table Structure

Syntax: DESCRIBE <table name>;

Example : DESCRIBE student;

Create Table Construct

• An SQL relation is defined using the create table
command:

create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1), ..., (integrity-constraintk))
• r is the name of the relation

Example:

create table branch

(branch_name char(15) not null,branch_city char(30),

assets integer);

CHECK CONSTRAINT

Example:

CREATE TABLE student_mstr(Std_id varchar2(10)

CHECK (Std_id LIKE ‘M%’), name varchar2(20)

CHECK (name =UPPER(name)), address varchar2(30));

DEFAULT VALUE

Example:

CREATE TABLE bank_mstr (name varchar2(20), cust_id

number(10), Curbal number(8,2) DEFAULT 0);

Views

• In some cases, it is not desirable for all users to see the entire
logical model (that is, all the actual relations stored in the
database.)

• Consider a person who needs to know a customer’s loan
number but has no need to see the loan amount. This person
should see a relation described, in SQL, by

(select customer_name, loan_number

from borrower, loan

where borrower.loan_number = loan.loan_number)

• A view provides a mechanism to hide certain data from the
view of certain users. Any relation that is not of the conceptual
model but is made visible to a user as a “virtual relation” is
called a view.

• Syntax: CREATE VIEW <Viewname > As

Select <columnname1>, <columnname2> FROM <table
name> where <columnname>=<expression list>;

Example

create view v1 as

(select branch_name, customer_name from depositor);

Example : SELECT customer_name from V1;

Example: DROP VIEW v1;

Indexes

• One of the greatest benefits of holding information in a database
is the ability to quickly retrieve it. When querying a database, it is
possible to apply criteria to ask for a specific set of rows. For
example, returning all employees that use a specific vehicle or
returning employees within a particular range of payroll IDs.

• If the DBMS needed to scan through all of the data within a table
in order to retrieve the desired information, the process would be
very slow, particularly for tables with millions of rows. To improve
retrieval performance a table can have one or more indexes. Each
index provides a fast "look-up" facility for rows, as an index in a
book allows all references to a topic to be located without reading
every page.

How do Indexes Work?

When an index is created, it records the location of values in a table

that are associated with the column that is indexed. Entries are added

to the index when new data is added to the table.

When a query is executed against the database and a condition is

specified on a column in the WHERE clause that is indexed, the

index first searched for the values specified in the WHERE clause.

Aggregate functions

These functions operate on the multi-set of values of a column of a
relation, and return a value

• avg: average value

• min: minimum value

• max: maximum value

• sum: sum of values

• count: number of values

•Find the average account balance at the Ghaziabad
branch.

select avg (balance) from account

where branch_name = ‘Ghaziabad’

•Find the number of depositors in the bank.

select count (*) from customer

•Find the number of tuples in the customer relation.

select count (distinct customer_name)

from depositor

Queries & Subqueries

Group By & Having Clause
Group By clause is used in the Select statement to collect data from multiple

records and group the results that have matching values for one or more
columns.

E.g. Write a SQL query which will return the job description of employees
along with the total salary:

SELECT job, SUM(salary) from EMP_DATA GROUP BY job;

E.g. Write a SQL query which will return the job description of employees
with the minimum salary in each job description
SELECT job, MIN(salary) from EMP_DATA GROUP BY job;

E.g. Write a SQL query which will return the job description of employees
with total number of employees in each job description

SELECT job, COUNT(*) from EMP_DATA GROUP BY job;

Group By & Having Clause
HAVING clause is used in the Select statement to FILTER the data returned

by the GROUP BY clause.

E.g. Write a SQL query which will return maximum salary of the
employees than 4000.

SELECT Deptno, MAX(salary) from EMP_DATA GROUP BY Deptno
HAVING MAX(salary)>4000;

E.g. Write a SQL query which will return minimum salary of the
employees than 1000.

SELECT Deptno, MIN(salary) from EMP_DATA GROUP BY Deptno
HAVING MAX(salary)>1000;

Group By & Having Clause

• Find the number of depositors for each branch.

select branch_name, count (distinct customer_name)

from depositor, account

where depositor.account_number =
account.account_number

group by branch_name

• Find the names of all branches where the average
account balance is more than 10000.

select branch_name, avg (balance)

from Bank_detail group by branch_name

having avg (balance) >10000

Nested Sub-query

•SQL provides a mechanism for the nesting of
sub-queries.

•A subquery is a select-from-where
expression that is nested within another query.

•A common use of subqueries is to perform
tests for set membership, set comparisons,
and set cardinality.

Examples

• Find all customers who have both an account and a loan at
the bank.

select distinct customer_name

from borrower

where customer_name in (select customer_name

from depositor)

• Find all customers who have a loan at the bank but do not
have an account at the bank

select distinct customer_name

from borrower

where customer_name not in (select customer_name

from depositor)

Database Operations

• Insert

• Update

• Delete

INSERT Operation

•Add a new tuple to account
insert into account

values (‘A-9732’, ‘Ghaziabad’,1200)

or equivalently
insert into account (

branch_name, balance, account_number)

values (‘Ghaziabad’, 1200, ‘A-9732’)

•Add a new tuple to account with balance set to null

insert into account

values (‘A-777’,‘Ghaziabad’, null)

UPDATES Operation

• Increase all accounts with balances over Rs. 10,000
by 600, all other accounts receive 500.

•Write two update statements:

update account set balance = balance +600

where balance > 10000

update account set balance = balance + 500

where balance = 10000

DELETE Operation

• Delete all account tuples at the Ghaziabad branch:

delete from account

where branch_name = ‘Ghaziabad’

• Delete all accounts at every branch located in the city ‘Kanpur’:

delete from account

where branch_name in (select branch_name

from branch where branch_city = ‘Kanpur’)

• Delete the record of all accounts with balances below the average
at the bank.

delete from account where balance < (select avg (balance) from
account)

Joins
• An SQL JOIN clause combines records from two or more tables in a

database. It creates a set that can be saved as a table or used as is.
A JOIN is a means for combining fields from two tables by using
values common to each.

SQL specifies four types of JOINs:

✓ INNER JOIN

✓ OUTER JOIN

✓CROSS JOIN

✓SELF JOIN

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Table_(database)

Inner Join
Inner joins are also known as Equi Joins. There are the most

common joins used in SQL . They are known as equi joins because
the where statement generally compares two columns from two
tables with the equivalence operator =.

This type of join can be used in situation where selecting only two
those rows that have values in common in the columns specified
in the ON clause, is required. In short INNER JOIN returns all rows
from both tables where there is a match.

Syntax: SELECT <column name1> FROM <tablename>

INNER JOIN <tablename2> ON <tablename1>.<columnname1>=
<Tablenem2>.<columnname2>

WHERE <condition>

Example:

SELECT E.Emp_No, E.Name,B.Name, E.Dept,E.Desig

From Emp_master E INNER JOIN Branch_master B

ON B.Branch_no=E.Branch_No;

OUTER JOIN

Outer Joins are similar to inner joins, but give a bit more flexibility

when selecting data from related tables. This type of join can be used

in situation where it is desired , to select all rows from the table on

the left (or right) regardless of whether the other table has values in

common.

Example: SELECT E.LNAME, E.DEPT,C.CONTACT FROM

EMP_MASTER E LEFT JOIN CONCT_MASTER C ON

E.EMP_NO=C.CODE_NO;

or

SELECT E.LNAME, E.DEPT,C.CONTACT FROM

EMP_MASTER E ,CONCT_MASTER C WHERE

E.EMP_NO=C.CODE_NO(+);

OUTER JOIN

The LEFT JOIN can be used which returns all the rows from the first

table (EMP_MASTER) even if there are no matches in the second

table (CONCT_MASTER) .

RIGHT JOIN
Example: SELECT E.LNAME, E.DEPT,C.CONTACT FROM

CONCT_MASTER C RIGHT JOIN EMP_MASTER E ON

C.CODE_NO=E.EMP_NO;

or

SELECT E.LNAME, E.DEPT,C.CONTACT FROM

CONCT_MASTER C , EMP_MASTER E WHERE

C.CODE_NO(+)=E.EMP_NO;

Natural Join

• A natural join offers a further specialization of equi-
joins. The join predicate arises implicitly by comparing
all columns in both tables that have the same column-
name in the joined tables. The resulting joined table
contains only one column for each pair of equally-
named columns.

• Example:

SELECT * FROM employee NATURAL JOIN
department ;

Cross Join

• A CROSS JOIN returns what’s known as a Cartesian product .
This means that the join combines every row from the left
table with the every row in the right table.

• This type of join can be used in the situations where it is
desired , of select all possible combinations of rows and
columns from both the tables.

• This type of join is usually not preferred as it may run for a
very long time and produce a huge result set that may not be
useful.

SELECT * FROM employee, department;

Self Join

• A self-join is joining a table to itself.

SELECT F.EmployeeID, F.LastName, S.EmployeeID,
S.LastName, F.Country

FROM Employee F, Employee S

WHERE F.Country = S.Country

ORDER BY F.EmployeeID, S.EmployeeID;

Set Operations
•The set operations union, intersect, and except
operate on relations and correspond to the relational
algebra operations:

•Each of the above operations automatically eliminates
duplicates; to retain all duplicates use the
corresponding multiset versions union all, intersect
all and except all.

Contd…
• Find all customers who have a loan, an account, or both:

(select customer_name from depositor)

UNION

(select customer_name from borrower)

• Find all customers who have both a loan and an account.

(select customer_name from depositor)

intersect

(select customer_name from borrower)

• Find all customers who have an account but no loan.

(select customer_name from depositor)

except

(select customer_name from borrower)

42

Left Outer Join

Use this when you only want to return rows that have matching data

in the left table, even if there's no matching rows in the right table.

SELECT * FROM Individual AS Ind LEFT JOIN

Publisher AS Pb ON Ind.IndividualId = Pb.IndividualId

Id FirstName LastName UserName

1 Fred Flinstone freddo

2 Homer Simpson homey

3 Homer Brown notsofamous

4 Ozzy Ozzbourne sabbath

5 Homer Gain noplacelike

Left Table

43

IndividualId AccessLevel

1 Administrator

2 Contributor

3 Contributor

4 Contributor

10 Administrator

Right Table

Id FirstName LastName UserName

1 Fred Flinstone freddo

2 Homer Simpson homey

3 Homer Brown notsofamous

4 Ozzy Ozzbourne sabbath

5 Homer Gain noplacelike

Left Table

IndividualId FirstName LastName UserName IndividualId AccessLevel

1 Fred Flinstone freddo 1 Administrator

2 Homer Simpson homey 2 Contributor

3 Homer Brown notsofamous 3 Contributor

4 Ozzy Osbourne sabbath 4 Contributor

5 Homer Gain noplacelike NULL NULL

Result Table

44

Right Outer Join

Use this when you only want to return rows that have

matching data in the right table, even if there's no matching

rows in the left table.
SELECT * FROM Individual AS Ind

RIGHT JOIN Publisher AS Pb

ON Ind.IndividualId = Pb.IndividualId;

Or
SELECT Ind.FIRSTNAME, Ind.LASTNAME,Pb.Username,Pb.Accesslevel FROM

Individual Ind, Publisher Pb WHERE Ind.IndividualId (+)= Pb.IndividualId;

IndividualId FirstName LastName UserName IndividualId AccessLevel

1 Fred Flinstone freddo 1 Administrator

2 Homer Simpson homey 2 Contributor

3 Homer Brown notsofamous 3 Contributor

4 Ozzy Osbourne sabbath 4 Contributor

NULL NULL NULL NULL 10 Administrator

Result Table:

Cursors in SQL
• The Oracle Engine uses a work area for its internal processing in order to execute

an SQL statement . This work area is private to SQL’s operations and is called a
Cursor.

• The data that is stored in the cursor is called the Active Data Set.

• Conceptually the size of the cursor in memory is the size required to hold the
number of rows in the Active Data Set.

• For every SQL statement execution certain area in memory is allocated. This
private SQL area is called context area or cursor. A cursor acts as a handle or
pointer into the context area. A PL/SQL program controls the context area using
the cursor. Cursor represents a structure in memory and is different from cursor
variable.

• When we declare a cursor, we get a pointer variable, which does not point any
thing. When the cursor is opened, memory is allocated and the cursor structure is
created. The cursor variable now points the cursor. When the cursor is closed the
memory allocated for the cursor is released.

• Cursors allow the programmer to retrieve data from a table and perform actions
on that data one row at a time. There are two types of cursors:

• Implicit Cursors and
• Explicit cursors

Implicit Cursors

• For SQL queries returning single row PL/SQL declares implicit cursors. Implicit cursors are
simple SELECT statements and are written in the BEGIN block (executable section) of the
PL/SQL. Implicit cursors are easy to code, and they retrieve exactly one row. PL/SQL
implicitly declares cursors for all DML statements. The most commonly raised exceptions
here are NO_DATA_FOUND or TOO_MANY_ROWS.

• Implicit cursor attributes can be used to access information about the status of the
last insert, update, delete or single-row select statements.

Example :

BEGIN

UPDATE emp_master SET Branch_no=&branch_no where Emp_no=&emp_no;

If SQL%FOUND then

Dbms_output.put_line(‘Employee successfully transferred’);

ENDIF;

If SQL%NOTFOUND then

Dbms_output.put_line(‘employee no. does not exist’);

ENDIF

END;

Explicit Cursors
• Explicit cursors are used in queries that return multiple rows. The set of rows

fetched by a query is called active set. The size of the active set meets the search
criteria in the select statement. Explicit cursor is declared in the DECLARE section
of PL/SQL program.

Syntax: CURSOR <cursor-name> IS <select statement>

Sample Code:

DECLARE
CURSOR emp_cur IS SELECT ename FROM EMP;
BEGIN

END;

Processing multiple rows is similar to file processing. For processing a file you need
to open it, process records and then close.

Similarly user-defined explicit cursor needs to be opened, before reading the
rows, after which it is closed. Like how file pointer marks current position in file
processing, cursor marks the current position in the active set.

Opening Cursor
Syntax: OPEN <cursor-name>;

Example : OPEN emp_cur;

• When a cursor is opened the active set is determined, the rows satisfying the
where clause in the select statement are added to the active set. A pointer is
established and points to the first row in the active set.

• Fetching from the cursor: To get the next row from the cursor we need to use fetch
statement.

Syntax: FETCH <cursor-name> INTO <variables>;

Example: FETCH emp_cur INTO ena;

FETCH statement retrieves one row at a time. Bulk collect clause need to be used to
fetch more than one row at a time.

Closing the cursor: After retrieving all the rows from active set the cursor should be
closed. Resources allocated for the cursor are now freed. Once the cursor is closed
the execution of fetch statement will lead to errors.

CLOSE <cursor-name>;

Explicit Cursor Attributes

• Every cursor defined by the user has 4 attributes. When appended
to the cursor name these attributes let the user access useful
information about the execution of a multi-row query.The
attributes are:

1.%NOTFOUND: It is a Boolean attribute, which evaluates to true, if the last
fetch failed. i.e. when there are no rows left in the cursor to fetch.

2.%FOUND: Boolean variable, which evaluates to true if the last fetch,
succeeded.

3.%ROWCOUNT: It’s a numeric attribute, which returns number of rows
fetched by the cursor so far.

4.%ISOPEN: A Boolean variable, which evaluates to true if the cursor is
opened otherwise to false

PL/SQL

• PL/SQL (Procedural Language/Structured Query Language) is
Oracle Corporation's proprietary procedural extension to the SQL
database language, used in the Oracle database. Some other SQL
database management systems offer similar extensions to the SQL
language. PL/SQL's syntax strongly resembles that of Ada, and just
like some Ada compilers of the 1980s.

• The key strength of PL/SQL is its tight integration with the Oracle
database.

• PL/SQL is one of three languages embedded in the Oracle
Database, the other two being SQL and Java.

• PL/SQL is development tool that not only supports SQL data
manipulation but also provides facilities of conditional checking,
branching and looping.

• PL/SQL sends an entire block of SQL statement to the Oracle engine
all in one go.

• PL/SQL also permits dealing with errors as required , and facilitates
displaying user-friendly messages, when errors are encountered.

• PL/SQL allows declaration and use of variables in blocks of code .
These variables can be used to stored results of a query for later
processing.

• Via PL/SQL , all sorts of calculations can be done quickly and
efficiently without the use of Oracle engine. This considerably
improves transaction performance.

PL/SQL offers several pre-defined packages for specific purposes.
Such PL/SQL packages include:

• DBMS_OUTPUT - for output operations to non-database
destinations

• DBMS_JOB - for running specific procedures/functions at a
particular time (i.e. scheduling)

• DBMS_SESSION - provides access to SQL ALTER SESSION and
SET ROLE statements, and other session information.

• DBMS_METADATA - for extracting meta data from the data
dictionary (such as DDL statements)

and many more - Oracle Corporation customarily adds more
packages and/or extends package functionality with each
successive release of Oracle Database.

Basic code structure

• PL/SQL scripts, and have the following structure:

DECLARE TYPE / item / FUNCTION / PROCEDURE declarations

BEGIN

Statements

EXCEPTION

EXCEPTION handlers

END ;

Example

DECLARE

number1 NUMBER:=4;

number2 NUMBER:= 17; -- value default

text1 VARCHAR2(12) := 'Hello world';

text2 DATE := SYSDATE; -- current date and time

BEGIN

DBMS_OUTPUT.PUT_LINE(number1);

DBMS_OUTPUT.PUT_LINE(number2);

DBMS_OUTPUT.PUT_LINE(text1);

DBMS_OUTPUT.PUT_LINE(text2);

END;

Major Data Types in PL/SQL

• The symbol := functions as an assignment operator to store
a value in a variable.

• The major data types in PL/SQL include:
• NUMBER

• CHAR

• VARCHAR2

• DATE

• TIMESTAMP

• TEXT etc.

Functions
Functions in PL/SQL are a collection of SQL and PL/SQL
statements that perform a task and should return a value to
the calling environment.

CREATE OR REPLACE FUNCTION <function_name>
[(input/output variable declarations)]
RETURN return_type <IS|AS> [declaration block]
BEGIN

<PL/SQL block WITH RETURN statement>
[EXCEPTION EXCEPTION block]

END;

Procedures

• Procedures are the same as Functions, in that they are
also used to perform some task with the difference being
that procedures cannot be used in a SQL statement and
although they can have multiple out parameters they do
not return a value. This is not always true for when an
NULL function is used.

Anonymous Blocks
Anonymous PL/SQL blocks can be embedded in an Oracle Pre-compiler or OCI
program. At run time, the program, lacking a local PL/SQL engine, sends these
blocks to the Oracle server, where they are compiled and executed. Likewise,
interactive tools such as SQL*Plus and Enterprise Manager, lacking a local PL/SQL
engine, must send anonymous blocks to Oracle.

Triggers
A trigger is a set of actions that run automatically when a

specified change operation is performed on a specified
table.

The change operation can be an SQL INSERT, UPDATE, or
DELETE statement, or an insert, update, or delete high
level language statement in an application program.

Triggers are useful for tasks such as enforcing business
rules, validating input data, and keeping an audit trail.

SQL triggers

The SQL CREATE TRIGGER statement provides a way

for the database management system to actively control,

monitor, and manage a group of tables whenever an insert,

update, or delete operation is performed.

The statements specified in the SQL trigger are executed

each time an SQL insert, update, or delete operation is

performed.

An SQL trigger may call stored procedures or user-defined

functions to perform additional processing when the

trigger is executed.

Triggering Events and Actions in SQL

• Triggering event can be insert, delete or update

• Triggers on update can be restricted to specific attributes
• E.g. create trigger T1 after update of balance on account

• Values of attributes before and after an update can be
referenced

• referencing old row as : for deletes and updates

• referencing new row as : for inserts and updates

• Triggers can be activated before an event, which can serve
as extra constraints. E.g. convert blanks to null.

create trigger setnull-trigger before update on r

referencing new row as nrow

for each row when nrow.phone-number = Null

62

Statement level Trigger

CREATE OR REPLACE TRIGGER T1 after update or

delete on EMPLOYEE

BEGIN

if updating then

insert into audit_table values (‘Value1’,’UPDATE’,sysdate);

Endif;

if deleting then

insert into audit_table values (‘Value1’,’DELETE’,sysdate);

Endif;

END; Audit_table

Name Type

TABLE_NAME VARCHAR2(10)

DML_OPERATION VARCHAR2(6)

DATE_OF_DML DATE

TYPES OF TRIGGRES

Row Trigger : A row trigger is fired each time in the table is affected

by triggering statement.

E.g. UPDATE statement updates multiple rows of a table, a row

trigger is fired once for each row affected by the UPDATE statement.

Statement Trigger:

It is fired once on behalf of the triggering statement , independent of

the number of rows the triggering statement affects.

Before Vs After Triggers

When defining a trigger it is necessary to specify the trigger timing,

i.e. specifying when the trigger action is to be executed in relation to

the triggering statement.

TYPES OF TRIGGRES

Before Trigger : it executes the trigger action before the triggering

statement.

After Trigger: it executes the trigger action after the triggering

statement is executed

Syntax : CREATE OR REPLACE TRIGGER <trigger name>

<BEFORE, AFTER>

{DELETE, INSERT, UPDATE [of Columnname]}

On <tablename>

Declare

:

Begin

<PL/SQL

End;

Creating Trigger

CREATE TRIGGER T1

AFTER UPDATE or DELETE on Cust_Master

FOR EACH ROW

DECLARE

BEGIN

PL/SQL statement

END;

Sql> CREATE TABLE BOOKSHELF (TITLE,PUBLISHER,CATEGORYNAME,RATING)

Example:

Create or replace trigger tt22 before update on bookshelf for each row when (new.rate
< old.rate)
Begin
Insert into bookshelf_aud values (:old.title,:old.rate,:new.rate,sysdate);
End;

Trigger Code
create trigger T1 after update on account

referencing new row as nrow

for each row

when nrow.balance < 0

begin

insert into borrower

(select customer-name, account-number

from depositor

where nrow.account-number =

depositor.account-number);

insert into loan values

(nrow.account-number, nrow.branch-name,nrow.balance);

update account set balance = 0

where account.account-number = nrow.account-number

end

Security and User Authorization in SQL

Threats to the database
Threats to the database include:

•Unauthorised modification: Changing data values for reasons of

sabotage, crime or ignorance which may be enabled by inadequate

security mechanisms, or sharing of passwords or password guessing etc.

•Unauthorised disclosure: When information that should not have been

disclosed has been disclosed. A general issue of crucial importance,

which can be accidental or deliberate.

• Loss of availability:

Some times called denial of service. When the database is not available

it incurs a loss .So any threat that gives rise to time offline, even to

check whether something has occurred, is to be avoided.

Categories of specific regulatory threats to
database systems

• Commercial sensitivity:
Most financial losses through fraud arise from employees. Access
controls provide both protection against criminal acts and evidence of
attempts (successful or otherwise) to carry out acts detrimental to the
organisation, whether fraud, extraction of sensitive data or loss of
availability.
• Personal privacy and data protection: Internationally, personal data is
normally subject to legislative controls. Personal data is data about an
identifiable individual. Often the individual has to be alive but the
method of identification is not prescribed. So a postal code for a home
may in some cases identify an individual, if only one person is living at
an address with the postal code. Such data needs careful handling and
control.

Categories of specific regulatory threats to database
systems

• Computer misuse:
There is also generally legislation on the misuse of computers. Misuse
includes the violation of access controls and attempts to cause damage
by changing the database state or introducing worms and viruses to
interfere with proper operation. These offences are often extraditable.
So an unauthorised access in India using computers in France to access
databases in Germany which refer to databases in America could lead
to extradition to France or Germany or the USA.
•Audit requirements:
These are operational constraints built around the need to know who
did what, who tried to do what, and where and when everything
happened. They involve the detection of events (including CONNECT
and GRANT transactions), providing evidence for detection, assurance as
well as either defence or prosecution. There are issues related to
computer-generated evidence.

Authentication and Authorization
Access to IT resources generally requires a log-in process that is trusted
to be secure. Most of what follows is directly about Relational client-
server systems. Other system models differ to a greater or lesser extent,
though the underlying principles remain true.
Authentication
✓ The client has to establish the identity of the server and the server

has to establish the identity of the client. This is done often by means
of shared secrets (either a password/user-id combination, or shared
biographic and/or biometric data).

✓ It can also be achieved by a system of higher authority which has
previously established authentication.

✓ In client-server systems where data (not necessarily the database) is
distributed, the authentication may be acceptable from a peer
system. Note that authentication may be transmissible from system
to system. The result, as far as the DBMS is concerned, is an
authorization-identifier.

Authentication does not give any privileges for particular tasks. It only

establishes that the DBMS trusts that the user is who he claimed to be

and that the user trusts that the DBMS is also the intended system.

Authentication is a prerequisite for authorization.

Authorization

Authorization relates to the permissions granted to an authorized user to

carry out particular transactions, and hence to change the state of the

database(write item transactions) and/or receive data from the database

(read-item transactions). The result of authorization, which needs to be

on a transactional basis, is a vector: Authorization.

Authorization

Forms of authorization on (parts of) the database:

• Read authorization - allows reading, but not
modification of data.

• Insert authorization - allows insertion of new data, but
not modification of existing data.

• Update authorization - allows modification, but not
deletion of data.

• Delete authorization - allows deletion of data

Security Specification in SQL

• The grant statement is used to confer authorization

grant <privilege list>

on <relation name or view name> to <user list>

• <user list> is:
• a user-id
• public, which allows all valid users the privilege granted

• Granting a privilege on a view does not imply granting
any privileges on the underlying relations.

• The grantor of the privilege must already hold the
privilege on the specified item (or be the database
administrator).

Privileges in SQL

• select: allows read access to relation,or the ability to
query using the view

• Example: grant users U1, U2, and U3 select authorization on the
branch relation:

grant select on branch to U1, U2, U3

• insert: the ability to insert tuples
• update: the ability to update using the SQL update

statement
• delete: the ability to delete tuples.
• references: ability to declare foreign keys when creating

relations.
• all privileges: used as a short form for all the allowable

privileges

Privilege To Grant Privileges

•with grant option: allows a user who is
granted a privilege to pass the privilege on to
other users.
•Example:

grant select on branch to U1 with grant option
gives U1 the select privileges on branch and allows U1 to

grant this privilege to others

Revoking Authorization in SQL

• The revoke statement is used to revoke authorization.
revoke<privilege list>
on <relation name or view name> from <user list>

[restrict|cascade]

• Example:
revoke select on branch from U1, U2, U3 cascade

• Revocation of a privilege from a user may cause other
users also to lose that privilege; referred to as cascading
of the revoke.

• We can prevent cascading by specifying restrict:
revoke select on branch from U1, U2, U3 restrict

With restrict, the revoke command fails if cascading
revokes are required.

Example: Grant Diagram

AP**

A owns the

object on

which P is

a privilege

Example: Grant Diagram

AP**

A owns the

object on

which P is

a privilege

BP*

A:

GRANT P

TO B WITH

GRANT OPTION

Example: Grant Diagram

AP**

A owns the

object on

which P is

a privilege

BP*

A:

GRANT P

TO B WITH

GRANT OPTION

CP*

B:

GRANT P

TO C WITH

GRANT OPTION

Example: Grant Diagram

AP**

A owns the

object on

which P is

a privilege

BP*

A:

GRANT P

TO B WITH

GRANT OPTION

CP*

B:

GRANT P

TO C WITH

GRANT OPTION

CP

A:

GRANT P

TO C

Example: Grant Diagram

AP** BP* CP*

CP

A executes

REVOKE P FROM B CASCADE;

However, C still

has P without grant

option because of

the direct grant.

Not only does B lose

P*, but C loses P*.

Delete BP* and CP*.

Example: Grant Diagram

AP** BP* CP*

CP

A executes

REVOKE P FROM B CASCADE;

However, C still

has P without grant

option because of

the direct grant.

Not only does B lose

P*, but C loses P*.

Delete BP* and CP*.

Even had

C passed P

to B, both

nodes are

still cut off.

Clusters

Clustering is an important concept for improving Oracle

performance. Whenever the database is accessed, any reduction in

input/output always helps in improving its overall performance.

The concept of cluster is where member records are stored

physically near parent records. For Oracle clusters can be used to

define common, one to many access paths, and the member rows

can be stored on the same database block as their owner row.

Clusters can be used to store data form different tables in the same

physical data blocks, they are appropriate to use if the records from

those tables are frequently queried together. By storing them in the

same data blocks, the number of database block reads needed to

fullfill such queries decreases, there by improving performance.

Packages

• Packages are groups of conceptually linked Functions,
Procedures,Variable,Constants & Cursors etc.

• The use of packages promotes re-use of code. Packages
usually have two parts, a specification and a body,
although sometimes the body is unnecessary.

• The specification (spec for short) is the interface to your
applications; it declares the types, variables, constants,
exceptions, cursors, and subprograms available for use.

• The body fully defines cursors and subprograms, and so
implements the spec.

