
Chapter 3

Lexical Analysis

1Compiler Design by Varun Arora

Outline
 Role of lexical analyzer

 Specification of tokens

 Recognition of tokens

 Lexical analyzer generator

 Finite automata

 Design of lexical analyzer generator

2Compiler Design by Varun Arora

The role of lexical analyzer

Lexical
Analyzer

Parser
Source

program

token

getNextToken

Symbol
table

To semantic

analysis

3Compiler Design by Varun Arora

Why to separate Lexical analysis
and parsing
1. Simplicity of design

2. Improving compiler efficiency

3. Enhancing compiler portability

4Compiler Design by Varun Arora

Tokens, Patterns and Lexemes
 A token is a pair a token name and an optional token

value

 A pattern is a description of the form that the lexemes
of a token may take

 A lexeme is a sequence of characters in the source
program that matches the pattern for a token

5Compiler Design by Varun Arora

Example
Token Informal description Sample lexemes

if

else

comparison

id

number

literal

Characters i, f

Characters e, l, s, e

< or > or <= or >= or == or !=

Letter followed by letter and digits

Any numeric constant

Anything but “ sorrounded by “

if

else

<=, !=

pi, score, D2

3.14159, 0, 6.02e23

“core dumped”

printf(“total = %d\n”, score);

6Compiler Design by Varun Arora

Attributes for tokens
 E = M * C ** 2
 <id, pointer to symbol table entry for E>
 <assign-op>
 <id, pointer to symbol table entry for M>
 <mult-op>
 <id, pointer to symbol table entry for C>
 <exp-op>
 <number, integer value 2>

7Compiler Design by Varun Arora

Lexical errors
 Some errors are out of power of lexical analyzer to

recognize:

 fi (a == f(x)) …

 However it may be able to recognize errors like:

 d = 2r

 Such errors are recognized when no pattern for tokens
matches a character sequence

8Compiler Design by Varun Arora

Error recovery
 Panic mode: successive characters are ignored until we

reach to a well formed token

 Delete one character from the remaining input

 Insert a missing character into the remaining input

 Replace a character by another character

 Transpose two adjacent characters

9Compiler Design by Varun Arora

Input Buffering
 How to speed the reading of source program ?

 to look one additional character ahead

 e.g.

 to see the end of an identifieryou must see a character

 which is not a letter or a digit

 not a part of the lexeme for id

 in C

 -,= , <

 ->, ==, <=

 two buffer scheme that handles large lookaheadssafely

 sentinels –improvement which saves time checking
buffer ends

10Compiler Design by Varun Arora

 Buffer size N

 N = size of a disk block (4096)

 read N characters into a buffer

 one system call

 not one call per character

 read < N characters we encounter eof

 two pointers to the input are maintained

 lexemeBegin–marks the beginning of the current lexeme

 forward–scans ahead until a pattern match is found

Buffer pairs

11Compiler Design by Varun Arora

 Forward pointer

 to test if it is at the end of the buffer

 to determine what character is read (multiwaybranch)

 sentinel

 added at each buffer end

 can not be part of the source program

 character eofis a natural choice

 retains the role of entire input end

 when appears other than at the end of a buffer it means
that the input is at an end

Sentinels

12Compiler Design by Varun Arora

Sentinels

Switch (*forward++) {

case eof:

if (forward is at end of first buffer) {

reload second buffer;

forward = beginning of second buffer;

}

else if {forward is at end of second buffer) {

reload first buffer;\

forward = beginning of first buffer;

}

else /* eof within a buffer marks the end of input */

terminate lexical analysis;

break;

cases for the other characters;

}

E = M eof * C * * 2 eof eof

13Compiler Design by Varun Arora

Specification of tokens
 In theory of compilation regular expressions are used

to formalize the specification of tokens

 Regular expressions are means for specifying regular
languages

 Example:
 Letter_(letter_ | digit)*

 Each regular expression is a pattern specifying the
form of strings

14Compiler Design by Varun Arora

Regular expressions
 Ɛ is a regular expression, L(Ɛ) = {Ɛ}

 If a is a symbol in ∑then a is a regular expression, L(a)
= {a}

 (r) | (s) is a regular expression denoting the language
L(r) ∪ L(s)

 (r)(s) is a regular expression denoting the language
L(r)L(s)

 (r)* is a regular expression denoting (L9r))*

 (r) is a regular expression denting L(r)

15Compiler Design by Varun Arora

Regular definitions
d1 -> r1

d2 -> r2

…

dn -> rn

 Example:

letter_ -> A | B | … | Z | a | b | … | Z | _

digit -> 0 | 1 | … | 9

id -> letter_ (letter_ | digit)*

16Compiler Design by Varun Arora

Extensions
 One or more instances: (r)+

 Zero of one instances: r?

 Character classes: [abc]

 Example:

 letter_ -> [A-Za-z_]

 digit -> [0-9]

 id -> letter_(letter|digit)*

17Compiler Design by Varun Arora

Recognition of tokens
 Starting point is the language grammar to understand

the tokens:

stmt -> if expr then stmt

| if expr then stmt else stmt

| Ɛ

expr -> term relop term

| term

term -> id

| number

18Compiler Design by Varun Arora

Recognition of tokens (cont.)
 The next step is to formalize the patterns:

digit -> [0-9]

Digits -> digit+

number -> digit(.digits)? (E[+-]? Digit)?

letter -> [A-Za-z_]

id -> letter (letter|digit)*

If -> if

Then -> then

Else -> else

Relop -> < | > | <= | >= | = | <>

 We also need to handle whitespaces:

ws -> (blank | tab | newline)+

19Compiler Design by Varun Arora

Transition diagrams
 Transition diagram for relop

20Compiler Design by Varun Arora

Transition diagrams (cont.)
 Transition diagram for reserved words and identifiers

21Compiler Design by Varun Arora

Transition diagrams (cont.)
 Transition diagram for unsigned numbers

22Compiler Design by Varun Arora

Transition diagrams (cont.)
 Transition diagram for whitespace

23Compiler Design by Varun Arora

Architecture of a transition-
diagram-based lexical analyzer

TOKEN getRelop()

{

TOKEN retToken = new (RELOP)

while (1) { /* repeat character processing until a

return or failure occurs */

switch(state) {

case 0: c= nextchar();

if (c == ‘<‘) state = 1;

else if (c == ‘=‘) state = 5;

else if (c == ‘>’) state = 6;

else fail(); /* lexeme is not a relop */

break;

case 1: …

…

case 8: retract();

retToken.attribute = GT;

return(retToken);

}
24Compiler Design by Varun Arora

Lexical Analyzer Generator - Lex

Lexical
Compiler

Lex Source program

lex.l
lex.yy.c

C
compiler

lex.yy.c a.out

a.outInput stream Sequence

of tokens

25Compiler Design by Varun Arora

Structure of Lex programs

declarations

%%

translation rules

%%

auxiliary functions

Pattern {Action}

26Compiler Design by Varun Arora

Example
%{

/* definitions of manifest constants

LT, LE, EQ, NE, GT, GE,

IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions

delim [\t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?

%%

{ws} {/* no action and no return */}

if {return(IF);}

then {return(THEN);}

else {return(ELSE);}

{id} {yylval = (int) installID(); return(ID); }

{number} {yylval = (int) installNum(); return(NUMBER);}

…

Int installID() {/* funtion to install the
lexeme, whose first character is
pointed to by yytext, and whose
length is yyleng, into the symbol
table and return a pointer thereto
*/

}

Int installNum() { /* similar to
installID, but puts numerical
constants into a separate table */

}

27Compiler Design by Varun Arora

28

Finite Automata
 Regular expressions = specification

 Finite automata = implementation

 A finite automaton consists of

 An input alphabet 

 A set of states S

 A start state n

 A set of accepting states F  S

 A set of transitions state input state

Compiler Design by Varun Arora

29

Finite Automata
 Transition

s1 
a s2

 Is read

In state s1 on input “a” go to state s2

 If end of input

 If in accepting state => accept, othewise => reject

 If no transition possible => reject

Compiler Design by Varun Arora

30

Finite Automata State Graphs
 A state

• The start state

• An accepting state

• A transition
a

Compiler Design by Varun Arora

31

A Simple Example
 A finite automaton that accepts only “1”

 A finite automaton accepts a string if we can follow
transitions labeled with the characters in the string
from the start to some accepting state

1

Compiler Design by Varun Arora

32

Another Simple Example
 A finite automaton accepting any number of 1’s

followed by a single 0

 Alphabet: {0,1}

 Check that “1110” is accepted but “110…” is not

0

1

Compiler Design by Varun Arora

33

And Another Example
 Alphabet {0,1}

 What language does this recognize?

0

1

0

1

0

1

Compiler Design by Varun Arora

34

And Another Example
 Alphabet still { 0, 1 }

 The operation of the automaton is not completely
defined by the input

 On input “11” the automaton could be in either state

1

1

Compiler Design by Varun Arora

35

Epsilon Moves
 Another kind of transition: -moves



• Machine can move from state A to state B
without reading input

A B

Compiler Design by Varun Arora

36

Deterministic and
Nondeterministic Automata
 Deterministic Finite Automata (DFA)

 One transition per input per state

 No -moves

 Nondeterministic Finite Automata (NFA)

 Can have multiple transitions for one input in a given
state

 Can have -moves

 Finite automata have finite memory

 Need only to encode the current state

Compiler Design by Varun Arora

37

Execution of Finite Automata
 A DFA can take only one path through the state graph

 Completely determined by input

 NFAs can choose

 Whether to make -moves

 Which of multiple transitions for a single input to take

Compiler Design by Varun Arora

38

Acceptance of NFAs
 An NFA can get into multiple states

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if it can get in a final state

Compiler Design by Varun Arora

39

NFA vs. DFA (1)
 NFAs and DFAs recognize the same set of languages

(regular languages)

 DFAs are easier to implement

 There are no choices to consider

Compiler Design by Varun Arora

40

NFA vs. DFA (2)
 For a given language the NFA can be simpler than the

DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA

Compiler Design by Varun Arora

41

Regular Expressions to Finite
Automata
 High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven
Implementation of DFA

Compiler Design by Varun Arora

42

Regular Expressions to NFA (1)
 For each kind of rexp, define an NFA

 Notation: NFA for rexp A

A

• For 


• For input a
a

Compiler Design by Varun Arora

43

Regular Expressions to NFA (2)
 For AB

A B


• For A | B

A

B









Compiler Design by Varun Arora

44

Regular Expressions to NFA (3)
 For A*

A






Compiler Design by Varun Arora

45

Example of RegExp -> NFA
conversion
 Consider the regular expression

(1 | 0)*1

 The NFA is



1
C E

0
D F




B





G







A H
1

I J

Compiler Design by Varun Arora

46

Next

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven
Implementation of DFA

Compiler Design by Varun Arora

47

NFA to DFA. The Trick
 Simulate the NFA

 Each state of resulting DFA

= a non-empty subset of states of the NFA

 Start state

= the set of NFA states reachable through -moves from
NFA start state

 Add a transition S a S’ to DFA iff

 S’ is the set of NFA states reachable from the states in S
after seeing the input a

 considering -moves as well

Compiler Design by Varun Arora

48

NFA -> DFA Example

1

0
1

 













A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

1
0 1

Compiler Design by Varun Arora

49

NFA to DFA. Remark
 An NFA may be in many states at any time

 How many different states ?

 If there are N states, the NFA must be in some subset
of those N states

 How many non-empty subsets are there?

 2N - 1 = finitely many, but exponentially many

Compiler Design by Varun Arora

50

Implementation
 A DFA can be implemented by a 2D table T

 One dimension is “states”

 Other dimension is “input symbols”

 For every transition Si 
a Sk define T[i,a] = k

 DFA “execution”

 If in state Si and input a, read T[i,a] = k and skip to state
Sk

 Very efficient

Compiler Design by Varun Arora

51

Table Implementation of a DFA

S

T

U

0

1

0

1
0 1

0 1

S T U

T T U

U T U

Compiler Design by Varun Arora

52

Implementation (Cont.)
 NFA -> DFA conversion is at the heart of tools such as

flex or jflex

 But, DFAs can be huge

 In practice, flex-like tools trade off speed for space in
the choice of NFA and DFA representations

Compiler Design by Varun Arora

Readings
 Chapter 3 of the book

53Compiler Design by Varun Arora

