Chapter 3
Analysis

/ \‘\

=

Outline

Role of lexical analyzer
Specification of tokens

Recognition of tokens

Lexical analyzer generator

Finite automata

Design of lexical analyzer generator

Compiler Design by Varun Arora

/—\ /

The role of lexical analyzer

token

To semantic
analysis

Source Lexical
program Analyzer

getNextToken

Symbol
table

Compiler Design by Varun Arora 3

~Why to sepamfc\aﬁaﬁaysis/

and parsing

1. Simplicity of design
>. Improving compiler efficiency
5. Enhancing compiler portability

Compiler Design by Varun Arora 4

Tokens, Patterns and Lexemes

A token is a pair a token name and an optional token
value

A pattern is a description of the form that the lexemes
of a token may take

A lexeme is a sequence of characters in the source
program that matches the pattern for a token

Compiler Design by Varun Arora

P
Example

Token

Informal description

Sample lexemes

If
else
comparison
id
number
literal

Characters i, f
Characterse, I, s, e

<or>or<=or>=or==orl=

Letter followed by letter and digits
Any numeric constant

Anything but *“ sorrounded by “

printf(“total = %d\n”, score);

Compiler Design by Varun Arora

if
else
Qo] o

pi, score, D2
3.14159, 0, 6.02e23

“core dumped”

Attributes for tokens
E=M*C** 2

<id, pointer to symbol table entry for E>

<assign-op>

<id, pointer to symbol table entry for M>
<mult-op>

<id, pointer to symbol table entry for C>

<exp-op>

<number, integer value 2>

Compiler Design by Varun Arora

P — e ey e

=

Lexical errors

Some errors are out of power of lexical analyzer to
recognize:

o fi (a==1(x)) ...
However it may be able to recognize errors like:
ed=o2r

Such errors are recognized when no pattern for tokens
matches a character sequence

Compiler Design by Varun Arora

/ T e D pp———

=

Error recovery

Panic mode: successive characters are ignored until we
reach to a well formed token

Delete one character from the remaining input
Insert a missing character into the remaining input
Replace a character by another character
Transpose two adjacent characters

Compiler Design by Varun Arora

Input Buffertng— B

How to speed the reading of source program ?

to look one additional character ahead
e.g.
e to see the end of an identifieryou must see a character
e which is not a letter or a digit
e not a part of the lexeme for id
e inC
° - = <
e -~
two buffer scheme that handles large lookaheadssafely

sentinels -improvement which saves time checking

buffer ends

Compiler Design by Varun Arora 10

‘Buffer pairs——= p—

Buffer size N

N = size of a disk block (4096)

read N characters into a buffer

one system call

not one call per character

read < N characters we encounter eof
two pointers to the input are maintained

e lexemeBegin-marks the beginning of the current lexeme

e forward-scans ahead until a pattern match is found

first buffer (N=10) second buffer (N=10)

i
~
R

o

1‘ 1+
forward

lexemeBegin

Compiler Design by Varun Arora 1

IR L — ==
. ——
Forward pointer
e to test if it is at the end of the buffer
e to determine what character is read (multiwaybranch)
Plsentinel

added at each buffer end

can not be part of the source program
character eofis a natural choice
retains the role of entire input end

when appears other than at the end of a buffer it means
that the input is at an end

Compiler Design by Varun Arora

12

e ‘eof
Switch (*forward++) {
case eof:
if (forward is at end of first buffer) {
reload second buffer;
forward = beginning of second buffer;
}
else if {forward is at end of second buffer) {
reload first buffer;\
forward = beginning of first buffer;
}
else /* eof within a buffer marks the end of input */
terminate lexical analysis;
break;
cases for the other characters;
13

} Compiler Design by Varun Arora

=

Specification of tokens

In theory of compilation regular expressions are used
to formalize the specification of tokens

Regular expressions are means for specifying regular
languages

Example:
o Letter_ (letter_ | digit)*

Each regular expression is a pattern specifying the
form of strings

Compiler Design by Varun Arora

14

P — e e

=

Regular expressions

e is a regular expression, L(e) = {&}

If aisa symbol in X then a is a regular expression, L(a)
= {a}

(r) | (s) is a regular expression denoting the language
L(r) U L(s)

(r)(s) is a regular expression denoting the language
L(r)L(s)

(r)* is a regular expression denoting (Lor))*
(r) is a regular expression denting L(r)

Compiler Design by Varun Arora 15

= . .

Regular definitions

di->1

d2 ->r2
dn -> rn

Example:
letter >A|B|..|Z|a|b|..|Z]|_
digit ->o|1|..]|9
id -> letter_ (letter_ | digit)*

Compiler Design by Varun Arora 16

/ - oL

Extensions

One or more instances: (r)+
Zero of one instances: r?

Character classes: [abc]

Example:

o letter -> [A-Za-z_|

e digit ->][o0-9]

e id -> letter_(letter|digit)*

Compiler Design by Varun Arora

17

Recognition of tokens

Starting point is the language grammar to understand
the tokens:

stmt -> if expr then stmt
| if expr then stmt else stmt
| e

expr -> term relop term
| term

term -> id

| number

Compiler Design by Varun Arora

18

Recognition of tokens (cont.)

The next step is to formalize the patterns:
digit ->[0-9]
Digits -> digit+
number -> digit(.digits)? (E[+-]? Digit)?
letter -> [A-Za-z_]

id -> letter (letter|digit)*
If -> if

Then ->then

Else ->else

Relop o e e

We also need to handle whitespaces:

ws -> (blank | tab | newline)+

Compiler Design by Varun Arora 19

Transition diagrams

* Transition diagram for relop

start i{}/\ < i @ =

return (relop, LE)

oz =© return (relop, NE)
\ *
___other ;@ return (relop, LT)

return (relop, EQ)

\ other "

- o return (relop, GT
Compiler Design by Varun Arora . (P,) 20

return (relop, GE)

© O

Transition diagrams (cont.)

* Transition diagram for reserved words and identifiers

letter or digit

—® letter =® other ;@ return (getToken(), installlD())

Compiler Design by Varun Arora 21

Transition diagrams (cont.)

* Transition diagram for unsigned numbers

digit digit
I_z"_ _'_l l(,-' B --\.
’ digit

Compiler Design by Varun Arora 22

Transition diagrams (cont.)

* Transition diagram for whitespace

delim

start e delim Dther*

Compiler Design by Varun Arora 23

__Architecture o

diagram-based lexical analyzer

TOKEN getRelop()
{
TOKEN retToken = new (RELOP)
while (1) { /* repeat character processing until a
return or failure occurs */
switch(state) {
case o: c= nextchar();
if (c == ‘<) state = 15
else if (c == ‘=) state = 5;
else if (c == *>’) state = 6;
else fail(); /* lexeme is not a relop */
break;

case1: ...

case 8: retract();
retToken.attribute = GT;
return(retToken);

Compiler Design by Varun Arora

24

Lexical Analyzer Generator - Lex

Lex Source program Lexical
lex.| : lex.yy.c
: Compiler
lex.yy.c : a.out
compiler
Input stream a.out Sequence
of tokens

Compiler Design by Varun Arora 25

Structure of Lex programs

declarations

%%

translation rules > Pattern {Action}
%%

auxiliary functions

Compiler Design by Varun Arora 26

/A

Example

%]

/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP */

Int installID() {/* funtion to install the
lexeme, whose first character is
pointed to by yytext, and whose
length is yyleng, into the symbol

%) table and return a pointer thereto
o
/* regular definitions)
delim [\t\n]
- {delim]}+ Int installNum() { /* similar to
o S installID, l_)ut puts numerical
o constants into a separate table */
= }
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?
%%
{ws} {/* no action and no return */}
if {return(IF);}
then {return(THEN);}
else {return(ELSE);}
{id} {yylval = (int) installID(); return(ID); }
{number} {yylval = (int) installNum(); return(NUMBER);}

Compiler Design by Varun Arora

27

/ e e R
Finite Automata

Regular expressions = specification

Finite automata = implementation

A finite automaton consists of
e An input alphabet X
o A set of states S
e A start state n
e A set of accepting states F — S
e A set of transitions state —"Put state

Compiler Design by Varun Arora

28

Finite Automata

Transition
d
S —%s.

Is read

«__ "

In state s, on input "a go to state s,

If end of input
e If in accepting state => accept, othewise => reject

If no transition possible => reject

Compiler Design by Varun Arora 29

e
Finite Automata Sta&s Graphs

A state

. The start state D
* An accepting state @

d

- A transition -

Compiler Design by Varun Arora 30

/ e e R
A Simple Example

A finite automaton that accepts only “1

£y

A finite automaton accepts a string if we can follow
transitions labeled with the characters in the string
from the start to some accepting state

Compiler Design by Varun Arora 3

Another Simple Example

A finite automaton accepting any number of 1's
followed by a single o

Alphabet: {o,1}
1

/0\@
Check that “1110” is accepted but “110...” is not

Compiler Design by Varun Arora 32

And Another Example

Alphabet {0,1}
What language does this recognize?

Compiler Design by Varun Arora 33

And Another Example

Alphabet still { o, 1 }
1

The operation of the automaton is not completely
defined by the input

e On input “11” the automaton could be in either state

Compiler Design by Varun Arora 34

Epsilon Moves

Another kind of transition: e-moves

e

OO

- Machine can move from state A to state B
without reading input

Compiler Design by Varun Arora

35

/De’cerminisﬂéﬁrd\/

Nondeterministic Automata

Deterministic Finite Automata (DFA)
e One transition per input per state

e No e-moves
Nondeterministic Finite Automata (NFA)

e Can have multiple transitions for one input in a given
state

e Can have e-moves
Finite automata have finite memory

e Need only to encode the current state

Compiler Design by Varun Arora

36

Execution of Finite Automata

A DFA can take only one path through the state graph
e Completely determined by input

NFAs can choose
e Whether to make e-moves
e Which of multiple transitions for a single input to take

Compiler Design by Varun Arora 37

=
Acceptance of NFAs

* An NFA can get into multiple states

1
Qf\@‘) —@
=
.+ Input: 101

* Rule: NFA accepts if it can get in a final state

Compiler Design by Varun Arora 38

NFA vs. DFA (1)

NFAs and DFAs recognize the same set of languages
(regular languages)

DFAs are easier to implement
e There are no choices to consider

Compiler Design by Varun Arora

39

e

'NFA vs. DFA (2)

For a given language the NFA can be simpler than the
DFA

1

NFA 8.@
0

() & 0

1
*+ DFA can be exponentially larger than NFA

Compiler Design by Varun Arora

40

_ Regular ExpM

Automata
High-level sketch

Regular \

expressions DFA

|

Lexical Table-driven
Specification Implementation of DFA

Compiler Design by Varun Arora 41

.
Regular Expressions to NFA (1)

For each kind of rexp, define an NFA
e Notation: NFA for rexp A

* Fore
—O)——0
* For input a

~-O—-0

Compiler Design by Varun Arora 42

Regular Expressions to NFA (2)

* For AB
@y @ .

- For A | B

- /
- Regular Expressions to NFA (3)

* For A*

b

<=

e

~ Example ofW

conversion
Consider the regular expression
(1] 0)*1
The NFA is
g

-

=

Compiler Design by Varun Arora 45

Next

/ NFA \
Regular

expressions DFA

Lexical Table-driven
Specification Implementation of DFA

Compiler Design by Varun Arora 46

NFA to DFA. The Trick

Simulate the NFA
Each state of resulting DFA

= a non-empty subset of states of the NFA
Start state

= the set of NFA states reachable through e-moves from
NFA start state

Add a transition S 2§’ to DFA iff

e S’ is the set of NFA states reachable from the statesin S
after seeing the input a

» considering e-moves as well

Compiler Design by Varun Arora 47

NFA -> DFA Example

0_~__FGABCDHI

ABCDHI

i
il

1 EJGABCDHI

Compiler Design by Varun Arora

ﬁ

QO
Ol

01

48

/ e e R
NFA to DFA. Remark

An NFA may be in many states at any time
How many different states ?

If there are N states, the NFA must be in some subset
of those N states

How many non-empty subsets are there?
e 2N -1 = finitely many, but exponentially many

Compiler Design by Varun Arora 49

/ e T

Implementation
A DFA can be implemented by a 2D table T

* One dimension is “states”

e Other dimension is “input symbols”

e For every transition S, »>2S, define T[i,a] = k
DFA “execution”

e If in state S, and input a, read T[i,a] = k and skip to state
S

<

 Very efficient

Compiler Design by Varun Arora 50

Table Implementation of a DFA

0 1
S T U
T T U
U i U

Compiler Design by Varun Arora 51

Implementation (Cont.)

NFA -> DFA conversion is at the heart of tools such as
flex or jflex

But, DFAs can be huge

In practice, flex-like tools trade off speed for space in
the choice of NFA and DFA representations

Compiler Design by Varun Arora

52

Readings

* Chapter 3 of the book

Compiler Design by Varun Arora b

