
Chapter 3

Lexical Analysis
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Outline
 Role of lexical analyzer

 Specification of tokens

 Recognition of tokens

 Lexical analyzer generator

 Finite automata

 Design of lexical analyzer generator
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The role of lexical analyzer

Lexical 
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Parser
Source

program

token

getNextToken
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To semantic

analysis
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Why to separate Lexical analysis 
and parsing
1. Simplicity of design 

2. Improving compiler efficiency

3. Enhancing compiler portability
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Tokens, Patterns and Lexemes
 A token is a pair a token name and an optional token 

value

 A pattern is a description of the form that the lexemes 
of a token may take

 A lexeme is a sequence of characters in the source 
program that matches the pattern for a token
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Example
Token Informal description Sample lexemes

if

else

comparison

id

number

literal

Characters i, f

Characters e, l, s, e

< or > or <= or >= or == or !=

Letter followed by letter and digits

Any numeric constant

Anything but “ sorrounded by “

if

else

<=, !=

pi, score, D2

3.14159, 0, 6.02e23

“core dumped”

printf(“total = %d\n”, score);
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Attributes for tokens
 E = M * C ** 2
 <id, pointer to symbol table entry for E>
 <assign-op>
 <id, pointer to symbol table entry for M>
 <mult-op>
 <id, pointer to symbol table entry for C>
 <exp-op>
 <number, integer value 2>
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Lexical errors
 Some errors are out of power of lexical analyzer to 

recognize:

 fi (a == f(x)) …

 However it may be able to recognize errors like:

 d = 2r

 Such errors are recognized when no pattern for tokens 
matches a character sequence
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Error recovery
 Panic mode: successive characters are ignored until we 

reach to a well formed token

 Delete one character from the remaining input

 Insert a missing character into the remaining input

 Replace a character by another character

 Transpose two adjacent characters
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Input Buffering
 How to speed the reading of source program ?

 to look one additional character ahead

 e.g. 

 to see the end of an identifieryou must see a character 

 which is not a letter or a digit

 not a part of the lexeme for id

 in C

 -,= , <

 ->, ==, <=

 two buffer scheme that handles large lookaheadssafely

 sentinels –improvement which saves time checking 
buffer ends
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 Buffer size N

 N = size of a disk block (4096)

 read N characters into a buffer

 one system call

 not one call per character

 read < N characters we encounter eof

 two pointers to the input are maintained

 lexemeBegin–marks the beginning of the current lexeme

 forward–scans ahead until a pattern match is found

Buffer pairs
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 Forward pointer

 to test if it is at the end of the buffer

 to determine what character is read (multiwaybranch)

 sentinel

 added at each buffer end

 can not be part of the source program

 character eofis a natural choice

 retains the role of entire input end

 when appears other than at the end of a buffer it means 
that the input is at an end

Sentinels
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Sentinels

Switch (*forward++) {

case eof:

if (forward is at end of first buffer) {

reload second buffer;

forward = beginning of second buffer;

}

else if {forward is at end of second buffer) {

reload first buffer;\

forward = beginning of first buffer;

}

else /* eof within a buffer marks the end of input */

terminate lexical analysis;

break;

cases for the other characters;

}

E   =   M eof *  C * * 2 eof eof
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Specification of tokens
 In theory of compilation regular expressions are used 

to formalize the specification of tokens

 Regular expressions are means for specifying regular 
languages

 Example:
 Letter_(letter_ | digit)*

 Each regular expression is a pattern specifying the 
form of strings
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Regular expressions
 Ɛ is a regular expression, L(Ɛ) = {Ɛ}

 If a is a symbol in ∑then a is a regular expression, L(a) 
= {a}

 (r) | (s) is a regular expression denoting the language 
L(r) ∪ L(s)

 (r)(s) is a regular expression denoting the language 
L(r)L(s)

 (r)* is a regular expression denoting (L9r))*

 (r) is a regular expression denting L(r)
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Regular definitions
d1 -> r1

d2 -> r2

…

dn -> rn

 Example:

letter_ -> A | B | … | Z | a | b | … | Z | _

digit -> 0 | 1 | … | 9

id -> letter_ (letter_ | digit)*
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Extensions
 One or more instances: (r)+

 Zero of one instances: r?

 Character classes: [abc]

 Example:

 letter_  -> [A-Za-z_]

 digit     -> [0-9]

 id          -> letter_(letter|digit)*
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Recognition of tokens
 Starting point is the language grammar to understand 

the tokens:

stmt -> if expr then stmt

|  if expr then stmt else stmt

| Ɛ

expr -> term relop term

|  term

term -> id

|  number
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Recognition of tokens (cont.)
 The next step is to formalize the patterns:

digit -> [0-9]

Digits -> digit+

number -> digit(.digits)? (E[+-]? Digit)?

letter  -> [A-Za-z_]

id -> letter (letter|digit)*

If -> if

Then -> then

Else -> else

Relop -> < | > | <= | >= | = | <>

 We also need to handle whitespaces:

ws -> (blank | tab | newline)+
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Transition diagrams
 Transition diagram for relop
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Transition diagrams (cont.)
 Transition diagram for reserved words and identifiers
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Transition diagrams (cont.)
 Transition diagram for unsigned numbers
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Transition diagrams (cont.)
 Transition diagram for whitespace
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Architecture of a transition-
diagram-based lexical analyzer

TOKEN getRelop()

{

TOKEN retToken = new (RELOP)

while (1) { /* repeat character processing until a

return or failure occurs */

switch(state) {

case 0: c= nextchar();

if (c == ‘<‘) state = 1;

else if (c == ‘=‘) state = 5;

else if (c == ‘>’) state = 6;

else fail(); /* lexeme is not a relop */

break;

case 1: …

…

case 8: retract();

retToken.attribute = GT;

return(retToken);

}
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Lexical Analyzer Generator - Lex

Lexical 
Compiler

Lex Source program

lex.l
lex.yy.c

C
compiler

lex.yy.c a.out

a.outInput stream Sequence 

of tokens
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Structure of Lex programs

declarations

%%

translation rules

%%

auxiliary functions

Pattern    {Action}
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Example
%{

/* definitions of manifest constants

LT, LE, EQ, NE, GT, GE,

IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions

delim [ \t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?

%%

{ws} {/* no action and no return */}

if {return(IF);}

then {return(THEN);}

else {return(ELSE);}

{id} {yylval = (int) installID(); return(ID); }

{number} {yylval = (int) installNum(); return(NUMBER);}

…

Int installID() {/* funtion to install the 
lexeme, whose first character is 
pointed to by yytext, and whose 
length is yyleng, into the symbol 
table and return a pointer thereto 
*/

}

Int installNum() { /* similar to 
installID, but puts numerical 
constants into a separate table */

}
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Finite Automata
 Regular expressions = specification

 Finite automata = implementation

 A finite automaton consists of

 An input alphabet 

 A set of states S

 A start state n

 A set of accepting states F  S

 A set of transitions  state input state
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Finite Automata
 Transition

s1 
a s2

 Is read

In state s1 on input “a” go to state  s2

 If end of input

 If in accepting state => accept, othewise => reject

 If no transition possible => reject
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Finite Automata State Graphs
 A state

• The start state

• An accepting state

• A transition
a
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A Simple Example
 A finite automaton that accepts only “1”

 A finite automaton accepts a string if we can follow 
transitions labeled with the characters in the string 
from the start to some accepting state

1
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Another Simple Example
 A finite automaton accepting any number of 1’s 

followed by a single 0

 Alphabet: {0,1}

 Check that “1110” is accepted but “110…” is not 

0

1
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And Another Example
 Alphabet {0,1}

 What language does this recognize?

0

1

0

1

0

1
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And Another Example
 Alphabet still { 0, 1 }

 The operation of the automaton is not completely 
defined by the input

 On input “11” the automaton could be in either state 

1

1
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Epsilon Moves
 Another kind of transition: -moves



• Machine can move from state A to state B 
without reading input

A B
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Deterministic and 
Nondeterministic Automata
 Deterministic Finite Automata (DFA)

 One transition per input per state

 No -moves

 Nondeterministic Finite Automata (NFA)

 Can have multiple transitions for one input in a given 
state

 Can have -moves

 Finite automata have finite memory

 Need only to encode the current state
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Execution of Finite Automata
 A DFA can take only one path through the state graph

 Completely determined by input

 NFAs can choose

 Whether to make -moves

 Which of multiple transitions for a single input to take
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Acceptance of NFAs
 An NFA can get into multiple states

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if it can get in a final state
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NFA vs. DFA (1)
 NFAs and DFAs recognize the same set of languages 

(regular languages)

 DFAs are easier to implement

 There are no choices to consider
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NFA vs. DFA (2)
 For a given language the NFA can be simpler than the 

DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA
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Regular Expressions to Finite 
Automata
 High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven 
Implementation of DFA
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Regular Expressions to NFA (1)
 For each kind of rexp, define an NFA

 Notation: NFA for rexp A        

A

• For 


• For input a
a
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Regular Expressions to NFA (2)
 For AB

A B


• For A | B

A

B








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Regular Expressions to NFA (3)
 For A*

A





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Example of RegExp -> NFA 
conversion
 Consider the regular expression

(1 | 0)*1

 The NFA is



1
C E

0
D F




B





G







A H
1

I J
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Next

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven 
Implementation of DFA
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NFA to DFA. The Trick
 Simulate the NFA

 Each state of resulting DFA 

= a non-empty subset of states of the NFA

 Start state 

= the set of NFA states reachable through -moves from 
NFA start state

 Add a transition S a S’ to DFA iff

 S’ is the set of NFA states reachable from the states in S 
after seeing the input a

 considering -moves as well
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NFA -> DFA Example

1

0
1

 













A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

1
0 1
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NFA to DFA. Remark
 An NFA may be in many states at any time

 How many different states ?

 If there are N states, the NFA must be in some subset 
of those N states

 How many non-empty subsets are there?

 2N - 1 = finitely many, but exponentially many
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Implementation
 A DFA can be implemented by a 2D table T

 One dimension is “states”

 Other dimension is “input symbols”

 For every transition Si 
a Sk define T[i,a] = k

 DFA “execution”

 If in state Si and input a, read T[i,a] = k and skip to state 
Sk

 Very efficient
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Table Implementation of a DFA

S

T

U

0

1

0

1
0 1

0 1

S T U

T T U

U T U
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Implementation (Cont.)
 NFA -> DFA conversion is at the heart of tools such as 

flex or jflex

 But, DFAs can be huge

 In practice, flex-like tools trade off speed for space in 
the choice of NFA and DFA representations
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Readings
 Chapter 3 of the book
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