Tree Terminology



Introduction

Data structure such as Arrays, Stacks, Linked List and
Queues are linear data structure. Elements are arranged
in linear manner i.e. one after another.

Tree is a non-linear data structure.

Tree imposes a Hierarchical structure, on a collection of
items.

Several Practical applications
- Organization charts.

- Family hierarchy
- Representation of algebraic expression
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Introduction

Representation of algebraic expression
Z=(J-K)/((L*M)+N)



Tree Definition

A tree is a collection of nodes

- The collection can be empty

- If not empty, a tree consists of a distinguished node
R (the root), and zero or more nonempty subtrees
T1, T2, ...., Tk, each of whose roots are connected by
a directed edge from R.

Figure 4.1 Generic tree
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Figure 4.2 A tree



Tree Terminologies
Root

- |t is the mother node of a tree structure. This tree
does not have parent. It is the first node in
hierarchical arrangement.

Node

- The node of a tree stores the data and its role is the
same as In the linked list. Nodes are connected by the
means of links with other nodes.

Parent
- It is the immediate predecessor of a node. In the
figure A is the parent of B and C. “



Tree Terminologies O,

Child e a

- When a predecessor of a node is parent then all
successor nodes are called child nodes. In the figure
B and C are the child nodes of A

Link / Edge

- An edge connects the two nodes. The line drawn from
one node to other node is called edge / link. Link is
nothing but a pointer to node in a tree structure.

Leaf

- This node is located at the end of the tree. It does not
have any child hence it is called leaf node.



Tree Terminologies

Level

- Level is the rank of tree hierarchy. The whole tree structured
is leveled. The level of the root node is always at 0. the
immediate children of root are at level 1 and their children
are at level 2 and so no.

Height

- The highest number of nodes that is possible in a way
starting from the first node (ROOT) to a leaf node is calldd
the height of tree. The formula for finding the height of
tree 7 i, 1, whereh isthe heightand|is the max Ievel

of the tree
Root node

Interior nodes Height

Leaf nodes



Tree Terminologies
Sibling

- The child node of same parent are called sibling. They are
also called brother nodes.

Degree of a Node

- The maximum number of children that exists for a node is
called as degree of a node.

Terminal Node
- The node with degree zero is called terminal node or leaf.

Path length.

- Is the number of successive edges from source node to
destination node.

Ancestor and descendant
- Proper ancestor and proper descendant



Tree Terminologies
Depth

- Depth of a binary tree is the maximum level of any leaf of a
tree.

Forest

- It is a group of disjoint trees. If we remove a root node from
a tree then it becomes the forest. In the following example,
if we remove a root A then two disjoint sub-trees will be
observed. They are left sub-tree B and right sub-tree C.



Binary Trees

The simplest form of tree is a binary tree. A binary tree
consists of

- a node (called the root node) and

- left and right sub-trees.
Both the sub-trees are themselves binary trees

We now have a recursively defined data structure.

Also, a tree is binary if each node of it has a maximum of
two branches i.e. a node of a binary tree can have
maximum two children.
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Notation

- root /C\'
o) (e

* left subtree——— /(B
* right subtree

It consists of a root and two subtrees



Notation

o

there is an edge from the root to its children

OO



Notation
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Notation

children ///J<:>
Who are node C's children?

Who are node A's children?

OO



Notation

o

descendants

Who are node C's descendants?

Who are node A's descendants?



Notation

o

parents a
Who is node E's parent? a

Who is node H's parent?

OO



Notation

ancestors /.
Who are node D's ancestors?

Who are node H's ancestors?

® O



Notation

from Jto A

(B,
path -

If n1, n2,...nk is a sequence Q
of nodes such that ni is the

parent of ni+1, then that

sequence is a path.

= The length of the path is k-1.



Notation

i
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depth - d
‘rheﬁ)eng‘rh of the path @ @

from the root of the tree
to the node




Notation

level -

all nodes of depth d are
at level d in the tree
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Notation

leaf node -
any node that has two
empty children




Notation

internal node -
any node that has at least one
non-emptyChild

Or
An internal node of a tree is any node which has degree greater than

one.



Some Binary Trees

Binary Trees

One node Two nodes
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Strictly Binary Tree

When every non-leaf node in binary tree is filled with left
and right sub-trees, the tree is called strictly binary tree.



Complete Binary Tree

A Complete binary tree is:
+  Atree in which each level of the tree is completely filled.
- Except, possibly the bottom level.

:



Dynamic Implementation of
Binary Tree

Linked Implementation
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Structure Definition of Binary Tree

Using Dynamic Implementation
The fundamental component of binary tree is node.

In binary tree node should consist of three things.

- Data
- Stores given values

- Left child
is a link field and hold the address of its left node
- Right child.
- Is a link field and holds the address of its right node.

struct node

{
int data
node *left_child;
node *right_child;



Operations on Binary Tree

Create

- Create an empty binary tree
Empty

- Return true when binary tree is empty else return false.
Lchild

- A pointer is returned to left child of a node, when a node is
without left child, NULL pointer is returned.

Rchild

- A pointer is returned to right child of a node, when a node is
without left child, NULL pointer is returned.

Father/Parent

- A pointer to father of a node is returned.



Operations on Binary Tree
Sibling
- A pointer to brother of the node is returned or else NULL
pointer is returned.

Tree Traversal

- Inorder Traversal

- Preorder Traversal
- Postorder Traversal

Insert
- To insert a node

Deletion
- To delete a node

Search
- To search a given node

Copy

- Copy one tree into another.



Example: Expression Trees

Figure 4.14 Expressiontreefor (a + b * ¢) + ((d *e + f ) * g)

Leaves are operands (constants or variables)
- The other nodes (internal nodes) contain operators



Traversal of a Binary Tree

Used to display/access the data in a tree in a certain
order.

In traversing always right sub-tree is traversed after left
sub-tree.

Three methods of traversing
- Preorder Traversing
- Root — Left —Right
- Inorder Traversing
- Left — Root — Right
- Postorder Traversing
- Left — Right - Root



Preorder Traversal

Preorder traversal
- Node - Left — Right
- Prefix expression

© ++a*bc*+*defg

Figure 4.14 Expressiontreefor (a + b * ¢) + ((d *e + f ) * g)



Inorder Traversal

* Inorder traversal
- left, node, right.
- infix expression
© at+b*c+d*e+f*g

Figure 4.14 Expressiontreefor (a + b * ) + ((d * e+ f ) * q)



Postorder Traversal

- Postorder Traversal
- left, right, node
- postfix expression
- abc*+de*f+g*+

Figure 4.14 Expressiontreefor (a + b * ¢) + ((d * e+ f ) * q)



Traversal Exercise

Traverse the following tree.

13

@/ /
7 (© @
(3

Pre-order Traversal?
Post-order Traversal?

In-order Traversal? QD/



Binary Search Tree



Binary Search Tree

Stores keys in the nodes in a way so that searching,
insertion and deletion can be done efficiently.

Binary search tree is either empty or each node N of
tree satisfies the following property

- The Key value in the left child is not more than the
value of root

- The key value in the right child is more than or
identical to the value of root

- All the sub-trees, i.e. left and right sub-trees follow the
two rules mention above.



Examples

A binary search tree Not a binary search tree



Example 2

Two binary search trees representing the same Data set:
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Example

* Input list of numbers:
14 154 97 18 3 5 16 4 20 17 9 14 5



Example

* Input list of numbers:
14 154 97 18 3 516 4 20 17 9 14 5

\

(1)



Example

* Input list of numbers:
14 15 4 97 18 3 5 16 4 20 17 9 14 5

/\

) (19)



Example

' Input list of numbers:
14 154 97 18 3 516 4 20 17 9 14 5

/\

) (19)
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Example

* Input list of numbers:
14 154 9 7 18 3 5 16 4 20 17 9 14 5

) (19)



Example

* Input list of numbers:
14 15 4 9 7 18 3 5 16 4 20 17 9 14 5

.
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Example

* Input list of numbers:
14 154 97 18 3 516 4 20 17 9 14 5

\
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Example

* Input list of numbers:
14 154 97 18 3 5 16 4 20 17 9 14 5



Example

* Input list of numbers:
14 154 97 18 3 5 16 4 20 17 9 14 5



Example

* Input list of numbers:
14 154 97 18 3 5 16 4 20 17 9 14 5




Example

* Input list of numbers:
14 154 97 18 3 5 16 4 20 17 9 14 5




Example

* Input list of numbers:
14 154 97 18 3 516 4 20 17 9 14 5




Example

* Input list of numbers:
14 154 97 18 3 516 4 20 17 9 14 5




Example

* Input list of numbers:
14 154 97 18 3 516 4 20 17 9 14 5




Example

* Input list of numbers:
14 154 97 18 3 516 4 20 17 9 14 5

"Binary Search Tree" of a given data
set



Binary Tree Implementation

Class BinaryTree{
private:
struct node{
int data;
node* LTree;
node* RTree;
|5
public:
node* root;
BinaryTree( ){ root = NULL; }
node* Insert(node* , int);
void Search(node* , int);
void InorderTraversal(node®);
void PreorderTraversal(node*);
void PostorderTraversal(node*);



Inorder Traversal Function

void BinaryTree::InorderTraversal(node* temp)
{
if(temp!=NULL)
{
InorderTraversal(temp->LTree);
cout<< temp->data;
InorderTraversal(temp->RTree);

}
}



Postorder Traversal Function

void BinaryTree::PostorderTraversal(node* temp)

{
if(temp!=NULL)

{
PostorderTraversal(temp->LTree);
PostorderTraversal(temp->RTree);
cout<< temp->data;

}



Preorder Traversal Function

void BinaryTree::PreorderTraversal(node* temp)

{
if(temp!=NULL)

{
cout<<temp->data;
PreorderTraversal(temp->LTree);
PreorderTraversal(temp->RTree);
}



Searching in Binary Search
Tree

Three steps of searching

- The item which is to be searched is compared with the root
node. If the item is equal to the root, then we are done.

- If its less than the root node then we search in the left sub-
tree.

- If its more than the root node then we search in the right
sub-tree.

The above process will continue till the item is found
or you reached end of the tree.



Example: Search for 9 ...

Search for 9:

mok W

compare 9:9, found it!

compare 9:15(the root), go to left subtree;
compare 9:6, go to right subtree;
compare 9:7, go to right subtree;
compare 9:13, go to left subtree;



Search Function

void BinaryTree::Search(node* temp, int num)
{
if(temp==NULL)
cout<<“Number not found";
else if(temp->data == num)
cout<<"Number found";
else if(temp->data > num)
Search(temp->LTree, num);
else if(temp->data < num)
Search(temp->RTree, num);



Insertion in BST

Three steps of insertion

- If the root of the tree is NULL then insert the first node and
root points to that node.

- If the inserted number is lesser than the root node then
insert the node in the left sub-tree.

- If the inserted number is greater than the root node then
insert the node in the right sub-tree.



Insertion Function

node* BinaryTree::Insert(node* temp, int num)

{

if (temp == NULL)
{

temp = new node;

temp->data= num;
temp->LTree= NULL;
temp->RTree=NULL;
}
else if(num < temp->data)
temp->LTree = Insert(temp->LTree, num);
else if( num >= temp->data)
temp->RTree = Insert(temp->RTree,num);
return temp;



Deletion in BST

- When we delete a node, we need to
consider how we take care of the children
of the deleted node.

- This has to be done such that the property of
the IS maintained.



Deletion in BST

Three cases:

(1) The node is a leaf
- Delete it immediately

(2) The node has one child

- Adjust a pointer from the parent to bypass that node

6

Figure 4.24 Deletion of a node (4) with one child, before and after



Deletion in BST

(3) The node has 2 children

- Replace the key of that node with the minimum element
at the right subtree

- Delete the minimum element

- Has either no child or only right child because if it has a left
child, that left child would be smaller and would have been
chosen. So invoke case 1 or 2.

Figure 4.25 Deletion of a node (2} with two children, before and after



Deletion Code

void BTree::DeleteNode(node* temp, int num)
{ if (temp==NULL)
cout<<"Number not Found"”;
else if((temp->data == num))
{ node *parent, *min ;
int number;
Il if number is found at a leaf node
if((temp->LTree == NULL) && (temp->RTree == NULL))
{
parent=GetParent(root, temp->data, root); //will return parent node
if(parent->LTree == temp)
parent->LTree = NULL;
else if (parent->RTree == temp)
parent->RTree = NULL;
delete temp;



Il if node to be deleted has one child

else if(((temp->LTree == NULL) && (temp->RTree != NULL)) ||
((temp->LTree != NULL) && (temp->RTree == NULL)))

{

parent = GetParent(root, temp->data, root); //will return parent node
if(temp->LTree = NULL){
if(parent->LTree == temp)

parent->LTree = temp->LTree;
else if (parent->RTree == temp)
parent->RTree = temp->LTree;
}
else if(temp->RTree != NULL){
if(parent->LTree == temp)
parent->LTree = temp->RTree;
else if (parent->RTree == temp)
parent->RTree = temp->RTree;

}

delete temp;



%3 |/if node to be deleted has two children
else if((temp->LTree = NULL) && (temp->RTree != NULL))

{

min = FindMin(temp->RTree); //will return the min. no. found in RTree

number = min->data;
DeleteNode(temp->RTree, min->data); //calling to itself recursively
temp->data= number;

}

else if (num < temp->data)

DeleteNode(temp->LTree, num); //calling to itself recursively
else if (hum > temp->data)

DeleteNode(temp->RTree, num); //calling to itself recursively



Full Binary Tree A Binary Tree is full if every node has 0 or 2 children.
Following are examples of a full binary tree. We can also say a full binary
tree is a binary tree in which all nodes except leaves have two children.

18
15 30

40 50 100 40

18
/ \
15 20
/\
40 50
/ 0\
30 50
18
/ \
40 30
/ 0\
100 40

In a Full Binary, number of leaf nodes is number of internal nodes
plus 1

L=1+1
Where L = Number of leaf nodes, | = Number of internal nodes

Complete Binary Tree: A Binary Tree is complete Binary Tree if all
levels are completely filled except possibly the last level and the last
level has all keys as left as possible

Following are examples of Complete Binary Trees



18

15 30

40 50 100 40

18
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15 30
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40 50 100 40
/N 7
8 7 9

Perfect Binary Tree A Binary tree is Perfect Binary Tree in which all
internal nodes have two children and all leaves are at the same level.

Following are examples of Perfect Binary Trees.
18

15 30

40 50 100 40

18

15 30



A Perfect Binary Tree of height h (where height is the number of nodes
on the path from the root to leaf) has 2" — 1 node.

Example of a Perfect binary tree is ancestors in the family. Keep a
person at root, parents as children, parents of parents as their children.

Extended Binary Tree

Extended binary tree is a type of binary tree in which all the null sub tree
of the original tree are replaced with special nodes called external
nodes whereas other nodes are called internal nodes

1

Here the circles represent the internal nodes and the boxes represent the
external nodes.

Properties of External binary tree

1. The nodes from the original tree are internal nodes and the special
nodes are external nodes.

2. All external nodes are leaf nodes and the internal nodes are non-leaf
nodes.

3. Every internal node has exactly two children and every external node
Is a leaf. It displays the result which is a complete binary tree

Application of extended binary tree:

1. Calculate weighted path length: It is used to calculate total path
length in case of weighted tree.



Here, the sum of total weights is already calculated and stored in the
external nodes and thus makes it very easier to calculate the total
path length of a tree with given weights. The same technique can be
used to update routing tables in a network.

2. To convert binary tree in Complete binary tree: The above-given
tree having removed all the external nodes, is not a complete binary
tree. To introduce any tree as complete tree, external nodes are
added onto it. Heap is a great example of a complete binary tree and
thus each binary tree can be expressed as heap if external nodes are
added to it.

Threaded Binary Tree

Inorder traversal of a Binary tree can either be done using recursion

or with the use of a auxiliary stack. The idea of threaded binary trees is to
make inorder traversal faster and do it without stack and without
recursion. A binary tree is made threaded by making all right child
pointers that would normally be NULL point to the inorder successor of
the node (if it exists).

There are two types of threaded binary trees.

Single Threaded: Where a NULL right pointers is made to point to the
inorder successor (if successor exists)


https://www.geeksforgeeks.org/618/
https://www.geeksforgeeks.org/inorder-tree-traversal-without-recursion/

Double Threaded: Where both left and right NULL pointers are made to
point to inorder predecessor and inorder successor respectively. The
predecessor threads are useful for reverse inorder traversal and
postorder traversal.

The threads are also useful for fast accessing ancestors of a node.

Following diagram shows an example Single Threaded Binary Tree. The
dotted lines represent threads.

Following diagram demonstrates inorder order traversal using threads.


https://media.geeksforgeeks.org/wp-content/cdn-uploads/gq/2014/07/threadedBT.png

Start at leftmost node, print it Follow thread to right, print node

Follow thread to right, print node Follow link to right, go to
leftmost node and print

Follow link to right, go to Follow thread to right, print node
leftmost node and print

continue same way for remaining node.....


https://media.geeksforgeeks.org/wp-content/cdn-uploads/gq/2014/07/threadedTraversal.png

Threaded Trees

Binary trees have a lot of wasted space: the
leaf nodes each have 2 null pointers

We can use these pointers to help us In
Inorder traversals

We have the pointers reference the next
node in an inorder traversal; called threads

We need to know if a pointer is an actual link
or a thread, so we keep a boolean for each
pointer

8/8/02 1



Threaded Tree Code

Example code:

class Node {
Node left, right;
boolean leftThread, rightThread;

}

8/8/02



‘ Threaded Tree Example

o

56 n

6@
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Threaded Tree Traversal

We start at the leftmost node in the tree, print
it, and follow its right thread

If we follow a thread to the right, we output
the node and continue to its right

If we follow a link to the right, we go to the
leftmost node, print it, and continue

8/8/02 4



‘ Threaded Tree Traversal

Start at leftmost node, print it

8/8/02 5



‘ Threaded Tree Traversal

Follow thread to right, print node

8/8/02 6



‘ Threaded Tree Traversal

Follow link to right, go to
leftmost node and print

8/8/02 7



‘ Threaded Tree Traversal

Follow thread to right, print node

8/8/02 8



‘ Threaded Tree Traversal

utput

\ICDO'IOOA}S

Follow link to right, go to
leftmost node and print

8/8/02 9



‘ Threaded Tree Traversal

utput

OO\ICDO'IOOA}S

Follow thread to right, print node

8/8/02 10



‘ Threaded Tree Traversal

Output

@OO\ICDO'IOOA}D

Follow link to right, go to
leftmost node and print

8/8/02 11



‘ Threaded Tree Traversal

ut

}S
=1

—_ OO0 NO O1 W0 -

—

Follow thread to right, print node

8/8/02 12



‘ Threaded Tree Traversal

ut

}S
=1

—_ =2 O 00O ~NO 01 W -

wA

Follow link to right, go to
leftmost node and print

8/8/02 13



‘ Threaded Tree Modification

8/8/02
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Introduction to Trees and
Graphs



Trees



What is a tree?

* Trees are structures used to represent hierarchic
al relationship

Each tree consists of nodes and edges
Each node represents an object

Each edge represents the relationship between t

AR




Some applications of Trees

Organization Chart Expression Tree
President 9
VP
Personnel O Marketlng © ®)

by & e

Director  pirector
Relation



Terminology |

For any two nodes u and v, if there is an edge po
inting from u to v, u is called the parent of v while
v is called the child of u. Such edge is denoted a

s (u, v).
In a tree, there is exactly one node without paren
t, which is called the root. The nodes without chil

dren are called leaves.

root

u: parent of v ?
v: child of u & \
O O

kaves



Terminology |

* In a tree, the nodes without children are ca

lled leaves. Otherwise, they are called inte
rnal nodes.

internal nodes

N

O O

leaves

&




Terminology Il

If two nodes have the same parent, they are sibli
ngs.

* A node u is an ancestor of v if u is parent of v or
parent of parent of v or ...

* Anode vis adescendent of uif vis child of v or
child of child of v or ...

v and w are siblings

u and v are ancestors of x

v and x are descendents of u @g \
7




Terminology IV

* A subtree Is any node together with all its
descendants.

An A



Terminology V

Level of a node n: number of nodes on the path from roo
t to node n

Height of a tree: maximum level among all of its node




Binary Tree

* Binary Tree: Tree in which every node has at mo

st 2 children

- Left child of u: the child on the left of u

Right child of u: the child on the right of u

Q)

\

6

10



Full binary tree

If T is empty, T is a full binary tree of height 0.

If T is not empty and of height h >0, T is a full bin
ary tree if both subtrees of the root of T are full bi

nary trees of height h-1.

g

11



Property of binary tree (l)

A full binary tree of height h has 2h-1 node
S

No.of nodes =20+21+ ..+ 2(h-1)
=2h -1

Level 1: 20 nodes

Level 2: 21 nodes

5 Level 3: 22 nodes

12



Property of binary tree (ll)

+ Consider a binary tree T of height h. The n
umber of nodes of T 2h-1

Reason: you cannot have more nodes than
a full binary tree of height h.

13



Property of binary tree (lll)

+ The minimum height of a binary tree with n
nodes is log(n+1)

By property (ll), n  2h-1

Thus, 2h n+1
Thatis, h log2 (n+1)

14



Binary Tree ADT

setElem
getElem \

getLeft, getRight

setLeft, setRight

isEmpty, isFull,
/ isComplete

makeTree

15



Representation of a Binary Tree

 An array-based representation
* Areference-based representation

16



An array-based representation

—1: empty tree

©
(B

Y

nodeNum item leftChild | rightChild
root
0 d 1 2 0
1 b 3 4
2 f 5 -1
3 a -1 -1
4 c -1 -1
5 e -1 -1
6 ? ? ? free
7 ? ? ? 6
8 ? ? ?
9 ? ? ?

17



Reference Based Representatio

N
NULL: empty tree left  element right
You can code this with a / \
class of three fields: \
Object element; /
BinaryNode left;
BinaryNode right;
(d) Ta
/ N\
® ® b U

4 e

18



Tree Traversal

+ Given a binary tree, we may like to do som
e operations on all nodes in a binary tree.
For example, we may want to double the v
alue in every node in a binary tree.

* To do this, we need a traversal algorithm
which visits every node in the binary tree.

19



Ways to traverse a tree

There are three main ways to traverse a tree:

- Pre-order:

(1) visit node, (2) recursively visit left subtree, (3) recursively
visit right subtree

- |In-order:

(1) recursively visit left subtree, (2) visit node, (3) recursively
right subtree

- Post-order:

(1) recursively visit left subtree, (2) recursively visit right subtr
ee, (3) visit node

- Level-order:

- Traverse the nodes level by level
In different situations, we use different traversal
algorithm.

20



Examples for expression tree

By pre-order, (prefix)
+*23/84

By in-order, (infix) @

2*3+8/4
- By post-order, (postfix) O (L.

By level-order,
+*/2384

- Note 1: Infix is what we read!

* Note 2: Postfix expression can be computed
efficiently using stack

21



Pre-order

Algorithm pre-order(BTree x)

If (X is not empty) {
print x.getltem(); // you can do other things!
pre-order(x.getLeftChild());
pre-order(x.getRightChild());

22



Pre-order example

Pre-order(a); —* Print a; - Print b; / Print d;

Pre-order(b); Pre-order(d); Pre-order(null);
Pre-order(c); \ Pre-order(null); Pre-order(null);
Print c;

Pre-order(null);
Pre-order(null);




Time complexity of Pre-order Tr
aversal

* For every node x, we will call
pre-order(x) one time, which performs O

(1) operations.
+ Thus, the total time = O(n).

24



In-order and post-order

Algorithm in-order(BTree x)

If (X is not empty) {
in-order(x.getLeftChild());
print x.getltem(); // you can do other things!
in-order(x.getRightChild());

Algorithm post-order(BTree x)

If (x is not empty) {
post-order(x.getLeftChild());
post-order(x.getRightChild());
print x.getltem(); // you can do other things!

25



In-order example

In-order(a); —* In-order(b); — > In-order(d); —— In-order(null);

Print a; Print b; Print d;
In-order(c); \ In-order(null); T In-order(null);

AN

In-order(null);
Print c;
In-order(null);




Post-order example

Post-order(a); — Post-order(b),— Post-order(d); — > Post-order(null);

Post-order(c); \ Post-order(null); ~— Post-order(null);
Print d;

Print a; \ Print b;

Post-order(null);
Print c;
Post-order(null);




Time complexity for in-order and
post-order

+ Similar to pre-order traversal, the time co
mplexity is O(n).

28



| evel-order

Level-order traversal requires a queue!

Algorithm level-order(BTree t)
Queue Q = new Queue();
BTree n;

Q.enqueue(t); // insert pointert into Q

while (! Q.empty()){
n = Q.dequeue(); //remove next node from the front of Q

if (In.isEmpty(){
print n.getltem();  // you can do other things

Q.enqueue(n.getlLeft()); // enqueue left subtree on rear of Q
Q.enqueue(n.getRight()); // enqueue right subtree on rear of Q

3
X
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Time complexity of Level-order t

raversal

* Each node will enqueue and dequeue one
time.

* For each node dequeued, it only does one
print operation!

+ Thus, the time complexity is O(n).

30



General tree implementation

struct TreeNode @

{ y
Object  element
TreeNode *firstChild e e Q G

TreeNode *nextsibling
o/
because we do not know how many children a
node has in advance.

Traversing a general tree is similar to traversing
a binary tree

31



Summary

We have discussed
- the tree data-structure.

- Binary tree vs general tree
- Binary tree ADT

 Can be implemented using arrays or references

- Tree traversal
 Pre-order, in-order, post-order, and level-order

32



Graphs

33



What is a graph?

 Graphs represent the relationships among data |
tems

- A graph G consists of
- a set V of nodes (vertices)
- a set E of edges: each edge connects two nodes

Each node represents an item
Each edge represents the relationship between t

WO items

34



Examples of graphs

Molecular Structure Computer Network

® Server 1 Terminal 1
® © @
Terminal 2
' Server 2

Other examples: electrical and communication networks,
airline routes, flow chart, graphs for planning projects

35



Formal Definition of graph

- The set of nodes is denoted as V

For any nodes u and v, if u and v are connect
ed by an edge, such edge is denoted as (u, Vv)

* The set of edges is denoted as E
+ Agraph G is defined as a pair (V, E)

36



Adjacent

* Two nodes u and v are said to be adjacent
if (u,v) E

u and v are adjacent
v and w are not adjacent

37



Path and simple path

- A path from v1 to vk is a sequence of node
s v1, v2, ..., vk that are connected by edg
es (v1, v2), (v2, v3), ..., (vk-1, vk)

+ A path is called a simple path if every nod
e appears at most once.

O,
-v2,Vv3,v4,Vv2, vlis a
path

- v2, v3, v4, v5 is a path,
also it is a simple path

38



Cycle and simple cycle

* Acycle is a path that begins and ends at t
he same node

+ A simple cycle is a cycle if every node app
ears at most once, except for the first and
the last nodes

v2,v3,v4,v5,Vv3, v2isa o,
cycle

v2, v3, v4, v2 is a cycle, it
IS also a simple cycle 39




Connected graph

- A graph G is connected if there exists path
between every pair of distinct nodes; other
wise, it is disconnected

e

This is a connected graph because there exists path

between every pair of nodes




Example of disconnected graph

This is a disconnected graph because there does not

exist path between some pair of nodes, says, vl and v/

41



Connected component

If a graph is disconnect, it can be partitioned into
a number of graphs such that each of them is co
nnected. Each such graph is called a connected

component.




Complete graph

+ A graph is complete if each pair of distinct
nodes has an edge

S W

Complete graph
with 3 nodes

Complete graph
with 4 nodes

43



Subgraph

+ A subgraph of a graph G =(V, E) is a graph
H= (U, F)suchthatU V and
F E.




Weighted graph

+ If each edge in G is assigned a weight, it |
s called a weighted graph

Chicago 1000 New York

5000 3500

Houston

45



Directed graph (digraph)

All previous graphs are undirected graph

If each edge in E has a direction, it is called a directed e
dge

A directed graph is a graph where every edges is a direc
ted edge

Chicago 1000 New York

O

2000 3500

Houston
46



More on directed graph

W

- If (X, y) Is a directed edge, we say
-y is adjacent to x

- y Is successor of X

- X Is predecessor of y

' In a directed graph, directed path, directed
cycle can be defined similarly

47



Multigraph

+ A graph cannot have duplicate edges.

+ Multigraph allows multiple edges and self
edge (or loop).

48



Property of graph

* A undirected graph that is connected and
has no cycle is a tree.

 Atree with n nodes have exactly n-1 edge
S.

A connected undirected graph with n node
s must have at least n-1 edges.

49



Implementing Graph

+ Adjacency matrix

- Represent a graph using a two-dimensional ar
ray

* Adjacency list

- Represent a graph using n linked lists where n
Is the number of vertices

50



Adjacency matrix for directed graph

Matrix[i][j] =1 if (vi, vj) E 1 2 3 4 5
0 if(vi,vj) E

vl v2 v3 v4 v5

1 v1|0|1/0/0]|0

N 2 v2/0(0|0|11]0

O/p

y\(é 3 v3/0(1/0]1]0

@) 4 valololololo

5 v5|0(0[1/1]0
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Adjacency matrix for weighted undir
ected graph

Matrix[i][j] = w(vi, vj) if (vi, vj) E or (vj, vi) E

00 otherwise

1 2 3 4 5
V V V V V
Q7Q 1 2 3 4 5
O/// > | 1 V] o[ 5 || o o

OO 1
2 V| H|w| 2|4 =

2
3 v 0|2 |37

3 52




Adjacency list for directed graph

11 v \Y;
1 2
g 2|V \Y;
O /M 2| 4
)
Qe\é 3|V Vv Y
3 2 4
4 | v
4
5|v
5

B <
A<




Adjacency list for weighted undirect
ed graph

O

< | A< | WO DN | L

v2(5)
v1(5)
v2(2)
v2(4)

v3(7)

v3(2) v4(4)
v4(3) vo(7)
v3(3) vo(8)

v4(8)
54



Pros and Cons

* Adjacency matrix

- Allows us to determine whether there is an ed
ge from node i to node j in O(1) time

* Adjacency list

- Allows us to find all nodes adjacent to a given
node | efficiently

- If the graph is sparse, adjacency list requires |
ess space
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Problems related to Graph

* Graph Traversal

+ Topological Sort

* Spanning Tree

* Minimum Spanning Tree

- Shortest Path

56



Graph Traversal Algorithm

 To traverse a tree, we use tree traversal algorith

ms like pre-order, in-order, and post-order to visit
all the nodes in a tree

- Similarly, graph traversal algorithm tries to visit a
Il the nodes it can reach.

If a graph is disconnected, a graph traversal that
begins at a node v will visit only a subset of node
s, that is, the connected component containing v.

57



Two basic traversal algorithms

Two basic graph traversal algorithms:
- Depth-first-search (DFS)

- After visit node v, DFS strategy proceeds along a p
ath from v as deeply into the graph as possible bef
ore backing up

- Breadth-first-search (BFS)

- After visit node v, BFS strategy visits every node a
djacent to v before visiting any other nodes

58



Depth-first search (DFS)

DFS strategy looks similar to pre-order. From a given no
de v, it first visits itself. Then, recursively visit its unvisited
neighbours one by one.

DFS can be defined recursively as follows.

Algorithm dfs(v)

print v; // you can do other things!
mark v as visited;

for (each unvisited node u adjacent to v)
dfs(u);

59



DFS example

- Start from v3




Non-recursive version of DFS al
gorithm

Algorithm dfs(v)
s.createStack();
s.push(v);
mark v as visited;
while (!Is.isEmpty()) {
let x be the node on the top of the stack s;
if (no unvisited nodes are adjacent to x)
s.pop(); // blacktrack
else {
select an unvisited node u adjacent to x;
s.push(u);
mark u as visited;

} 61



Non-recursive DFS example

visit stack

v3 v3

V2 v3, V2

v v3, v2, v1

backtrack |v3, v2

v4 v3, v2, v4

v5 v3, v2, v4 |
VO

backtrack |v3, v2, v4

backtrack |v3, v2

backtrack |v3

backtrack | empty

62



Breadth-first search (BFS)

BFS strategy looks similar to level-order. From a
given node v, it first visits itself. Then, it visits ev
ery node adjacent to v before visiting any other n
odes.

- 1. Visitv

- 2. Visit all v's neigbours

- 3. Visit all v's neighbours’ neighbours

- Similar to level-order, BFS is based on a queue.
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Algorithm for BFS

Algorithm bfs(v)
g.createQueue();
g.enqueue(Vv);
mark v as visited;
while(!q.isEmpty()) {
w = g.dequeue();
for (each unvisited node u adjacent to w) {
g.enqueue(u);
mark u as visited;
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BFS example

Start from v5

1
e
Freg
5

65

Visit | Queue
(front to
back)

VvdO | VD
empty

v3 |[v3

v4 v3, v4
v4

V2 v4, v2
\%
empty

A A
empty




Topological order

Consider the prerequisite structure for courses:

O
Each node x represents a course x

(X, y) represents that course x is a prerequisite to course y

Note that this graph should be a directed graph without cycles (calle
d a directed acyclic graph).

A linear order to take all 5 courses while satisfying all prerequisites i
s called a topological order.

E.g.

- a,cb,ed

- ¢c,a,b, e, d
66



Topological sort

 Arranging all nodes in the graph in a topological
order

Algorithm topSort

n=[V[

fori=1ton{
select a node v that has no successor;
alList.add(1, v);
delete node v and its edges from the graph;

;

return aList;

67



d has no
successor!
Choose d!

@

Both b and c have Only b has no Choose a!

NnO successor! successor!

The topological order
Choose c! Choose b! |




Topological sort algorithm 2

This algorithm is based on DFS
Algorithm topSort2
s.createStack();
for (all nodes v in the graph) {
if (v has no predecessors) {
s.push(v);
mark v as visited;
}

}
while (Is.isEmpty()) {

let x be the node on the top of the stack s;

if (no unvisited nodes are adjacent to x) { // i.e. x has no unvisited successor
alist.add(1, x);
s.pop(); // blacktrack

} else {
select an unvisited node u adjacent to x;
s.push(u);
mark u as visited;
}
} 69

return aList;



Spanning Tree

+ Given a connected undirected graph G, a
spanning tree of G is a subgraph of G that
contains all of G's nodes and enough of its
edges to form a tree.

Spanning
tree

Spanning tree is not unique!

70



DFS spanning tree

* Generate the spanning tree edge during the DF
S traversal.

Algorithm dfsSpanningTree(v)

mark v as visited,;

for (each unvisited node u adjacent to v) {
mark the edge from u to v;
dfsSpanningTree(u);

}

- Similar to DFS, the spanning tree edges can be generate
d based on BFS traversal.
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Example of generating spanning
tree based on DFS

stack

—> |3 v3
—) V2 v3, V2
—) v v3, v2, v
—_ backtrack |v3, v2
_) v4 v3, v2, v4
—) v5 v3, v2, v4 |
— VO
=Y | backtrack |v3, v2, v4
==Y | backtrack |v3, v2
==Y |backtrack |v3

backtrack | empty

| b AN
Y Y
A A



Minimum Spanning Tree

Consider a connected undirected graph where
- Each node x represents a country x

- Each edge (x, y) has a number which measures the c
ost of placing telephone line between country x and c
ountry y

Problem: connecting all countries while minimizi
ng the total cost

Solution: find a spanning tree with minimum total
weight, that is, minimum spanning tree
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Formal definition of minimum sp
anning tree

- Given a connected undirected graph G.

- Let T be a spanning tree of G.

- cost(T) = e Tweight(e)

* The minimum spanning tree is a spanning tree T
which minimizes cost(T)

Minimum

74



Prim’s algorithm ()

o o
LTl T

Start from v5, find the Find the minimum edge
minimum edge attach to v5 attach to v3 and v5

O/

Find the minimum edge
attach to v2, v3 and v5

/

/

Find the minimum edge
attach to v2, v3, v4 and v5
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Prim’s algorithm (ll)

Algorithm PrimAlgorithm(v)

Mark node v as visited and include it in the mini
mum spanning tree;

while (there are unvisited nodes) {

- find the minimum edge (v, u) between a visited node v
and an unvisited node u;

- mark u as visited,;
- add both v and (v, u) to the minimum spanning tree;

}
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Shortest path

Consider a weighted directed graph
- Each node x represents a city x

- Each edge (x, y) has a number which represent the c
ost of traveling from city x to city y

Problem: find the minimum cost to travel from cit
y xto city y

Solution: find the shortest path from xto y

77



Formal definition of shortest pat
h

- Given a weighted directed graph G.

- Let P be a path of G from x to y.

- cost(P)= e Pweight(e)

* The shortest path is a path P which minimizes c

ost(P)
o F
L]
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Dijkstra’'s algorithm

+ Consider a graph G, each edge (u, v) has
a weight w(u, v) > 0.

- Suppose we want to find the shortest path
starting from v1 to any node vi

- Let VS be a subset of nodes in G

* Let cost|vi] be the weight of the shortest p
ath from v1 to vi that passes through node
s in VS only.

79



Example for Dijkstra’s algorithm

oA
S

v | VS cost[v1] | cost[vZ] cost[v3] | cost[v4] | cost[vd]

V1] 0 5 oo oo o0




Example for Dijkstra’s algorithm

o~ 1
e

v | VS cost[v1] |cost[v2] |cost[v3] |cost[v4] |cost[vd]
[v1] 0 3 00 00 00
v2 | [v1, v2] 0 ) 00 9 o0

81




Example for Dijkstra’s algorithm

o
S

v | VS cost[v1] | cost[vZ] cost[v3] | cost[v4] cost[v9]
[v1] 0 3 00 00 °0

v2 | [v1, v2] 0 ) 00 9 °0

v4 | [v1, v2, v4] 0 5 12 9 17

82




Example for Dijkstra’s algorithm

v | VS cost[v1] |cost[v2] |cost[v3] |cost[v4] | cost[vd]
[v1] 0 3 00 00 00
2|v2|[vl, v2] 0 ) 00 9 o0
3|v4|[vl, v2, v4] 0 5 12 9 17
41v3|[vl,v2,v4,v3] |0 5 12 9 16
S|vh|[vl,v2,v4,v3, |0 ) 12 9 16
VO]
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Dijkstra’'s algorithm

Algorithm shortestPath()
n = number of nodes in the graph;
fori=1ton
cost[vi] = w(v1, vi);
VS ={vl}
for step=2ton{
find the smallest cost[vi] s.t. vi is not in VS;
include vi to VS;
for (all nodes vj not in VS) {
if (cost[vj] > cost[vi] + w(vi, Vvj))
cost[vj] = cost[vi] + w(vi, vj);

84



Summary

Graphs can be used to represent many real-life
problems.

There are numerous important graph algorithms.

We have studied some basic concepts and algor
ithms.

- Graph Traversal

- Topological Sort

- Spanning Tree

- Minimum Spanning Tree

- Shortest Path
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Binary search trees

- binary search tree ("BST"): a binary tree where each non-
empty node R has the following properties:
- every element of R's left subtree contains data "less than" R's data,
- every element of R's right subtree contains data "greater than" R's,
- R's left and right subtrees are also binary search trees.

overall root
- BSTs store their elements in
sorted order, which is helpful

for searching/sorting tasks. @ @

O® @

2




BST examples

- Which of the trees shown are legal binary search trees?

e o
© 099 0 8

% RO @ ©0 G




Searching a BST

- Describe an algorithm for searching a binary search tree.

- Try searching for the value 31, then 6.
overall root

- What is the maximum ‘
number of nodes you

would need to examine

to perform any search? @ @

D ©® @ 6
2@ ® WEY W ez

4




- Convert the IntTree class into @ SearchTree class.
- The elements of the tree will constitute a legal binary search tree.

 Modify contains to take advantage of the BST structure.

" tree.

* tree

" tree.

* tree.

(2
.contains (5
(6
(3

contailns

contains

contains

overall root

true

Lrue (i:)
false

false

A\ 4 A 4

G0® @ 6




Exercise solution

// Returns whether this BST contains the given integer.
public boolean contains (int wvalue) {
return contains (overallRoot, wvalue);

}

private boolean contains (IntTreeNode node, 1int value) {

if (node == null) {

return false; // base case: not found here
} else 1f (node.data == wvalue) {

return true; // base case: found here

} else if (node.data > wvalue) {

return contains (node.left, wvalue);
} else { // root.data < value

return contains (node.right, wvalue) ;

}



Adding to a BST

- Suppose we want to add new values to the BST below.
- Where should the value 14 be added? overall root

- Where should 3 be added? 7? ‘

- If the tree is empty, where

should a new value be added? @

. Wh h ? (
at is the general algorithm: O @ 19




Adding exercise

- Draw what a binary search tree would look like if the following
values were added to an initially empty tree in this order:

50 (DN

20
/5

®
3 (3 "

80) (150
39
23

11 8




- Add a method add to the searchTree class that adds a given
integer value to the BST.

- Add the new value in the proper place to maintain BST ordering.

overall root

" tree.add (49),
B @ ) O
49)




An incorrect solution

// Adds the given value to this BST in sorted order.

public void add(int value) {
add (overallRoot, wvalue);

}

private void add (IntTreeNode node, int value) {

if (node == null) {
node = new IntTreeNode (value) overallRoot
} else 1f (node.data > value) {
add (node.left, wvalue); @
} else 1f (node.data < value) {
add (node.right, wvalue) ;
} ( g ) @ @
// else node.data == wvalue, so

// 1it's a duplicate (don't add) @ @ @ @

}

- Why doesn't this solution work?

10
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A tangent: Change a point

- What is the state of the object referred to by p after this code?

public static void main (String[] args) {
Point p = new Point(l, 2);
change (p) ; p—| x[ 1 Jv[ 2
System.out.println (p) ; //

public static void change (Point thePoint) {
thePoint.x = 3;
thePoint.y = 4;

// answer: (3. 4) 12



Change point, version 2

- What is the state of the object referred to by p after this code?

public static void main (String[] args) {
Point p = new Point(l, 2);
— 1 2
change (p) ; b Y

System.out.println(p);

public static void change (Point thePoi
thePoint = new Point (3, 4);

// answer: (1. 2) 13



Changing references

- If @ method dereferences a variable (with . ) and modifies the
object it refers to, that change will be seen by the caller.

public static void change (Point thePoint) {
thePoint.x = 3; // affects p
thePoint.setY (4) ; // affects p

- If a method reas#qns a variable to refer to a new object, that
change will not affect the variable passed in by the caller.

public static void change (Point thePoint) {
thePoint = new Point (3, 4); // p unchanged
thePoint = null; // p unchanged

14



Change point, version 3

- What is the state of the object referred to by p after this code?

public static void main (String[] args) {
Point p = new Point(l, 2);
— 1 2
change (p) ; b * Y

System.out.println(p); //
}

public static Point change (Point thePo;;t) {
thePoint = new Point (3, 4); x| 3 |y| 4

return thePoint;

// answer: (1. 2) 1>



Change point, version 4

- What is the state of the object referred to by p after this code?

public static void main (String[] args) {
Point p = new Point(l, 2);
1 2
p = change (p):; P 7 Y

System.out.println (p
}

public static Point change (Point theP :\t

thePoint = new Point (3, 4); 3 y| 4

return thePoint;

// answer: (3. 4) 16



X = change(X);

- If you want to write a method that can change the object that

a variable refers to, you must do three things:
1. pass in the original state of the object to the method

2. return the new (possibly changed) object from the method

3. re-assign the caller's variable to store the returned result

p = change (p) ; // in main

public static Point change (Point thePoint) {
thePoint = new Point (99, -1);

return thePoint;

. . . 17
- We call thic aeneral alaorithmic pattern ¥ = chanael( x)*



The problem

- Much like with linked lists, if we just modify what a local
variable refers to, it won't change the collection.

node

private void add(IntTreeNode node, int value) {
1f (node == null) { overallRoot
node = new IntTreeNode (value);

}

- In the linked list case, how did we
actuaIIy modify the list?

by changing the front
- by changing a node's next field @ @ @ @

18



Applying x = change(x)

- Methods that modify a tree should have the following pattern:

- input (parameter): old state of the node

- output (return): new state of the node
node parameter your return  node
before method - after

- In order to actually change the tree, you must reassign:

node = change (node,
parameters) ;
node.left = change (node.left,
parameters) ;
node.right = change (node.right,
19

parameters) ;



A correct solution

// Adds the given value to this BST in sorted order.
public void add(int value) {

overallRoot = add(overallRoot, wvalue);
}

private IntTreeNode add (IntTreeNode node,

int value) {
if (node == null) {
node = new IntTreeNode (value);
} else 1f (node.data > value) {
node.left =

add (node.left, value): overallRoot
} else 1f (node.data < value) {

node.right = add(node.right, value);
} // else a duplicate; do nothing

return node;

20



Traversing a Binary Tree
Binary Search Tree Insertion
Deleting from a Binary Search Tree




Traversing a Binary Tree
Inorder Traversal




The Scenario

Imagine we have a binary tree
We want to traverse the tree
- It’s not linear
- We need a way to visit all nodes

Three things must happen:

- Deal with the entire left sub-tree
- Deal with the

- Deal with the entire right sub-tree




Use the Activation Stack

With a recursive module, we a
can make use of the
activation stack to visit the

sub-trees and “remember” a @

where we left off.
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At 42 — do left

At 13 — do right
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Use the Activation Stack

With a recursive module, we a
can make use of the
activation stack to visit the

sub-trees and “remember” a @

where we left off.

At NIL

At 42 — do right

At 13 — do right




Use the Activation Stack

With a recursive module, we a
can make use of the
activation stack to visit the

sub-trees and “remember” a @

where we left off.

At 42 — done

At 13 — do right




Use the Activation Stack

With a recursive module, we °
can make use of the
activation stack to visit the

sub-trees and “remember” a @

where we left off.

At 13 — done




Outline of In-Order Traversal

* Three principle steps:

- Traverse Left
- Do work (Current)
- Traverse Right

* Work can be anything
- Separate work from traversal




Traverse the tree “In order”:
- Visit the tree’s left sub-tree
- Visit the
- Visit right sub-tree




In-Order Traversal Procedure

procedure In Order (cur iot in Ptr toa Tree Node)
// Purpose: perform in-order traversal, call
// Do Something for each node
// Preconditions: cur points to a binary tree
// Postcondition: Do Something on each tree
// node in “in-order” order
if( cur <> NIL ) then
In Order( cur”.left child )
Do Something( cur”.data )
In Order( cur”.right child )
endif

endprocedure // In Order
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Continue?
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Proc InOrderPrint (pointer)
pointer NOT NIL?

@ InOrderPrint (left child)
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Proc InOrderPrint (pointer)
pointer NOT NIL?
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Algorithm Example

InOrderPrint (root

)

Output: 1 3 7 9 14 22
36 44 67 94 97

root

3

977




Summary

An In-Order traversal visits every node
- Recurse left first

- Do something with current

- Recurse right last

The “left, current, right” logic is repeated
recursively at every node.

For a BST, an in-order traversal accesses
the elements in ascending order.




Questions?




Binary Search Tree Insertion




Tree Node Defined

In general:
Node definesa record

data isoftype <type>

left, right isoftype ptr toa Node
endrecord

In this example:
Node definesa record

data isoftype num

left, right isoftype ptr toa Node
endrecord




Scenario

* We have a Binary Search Tree
- It can be empty
- Or have some elements in it already

- We want to add an element to it

- Inserting/adding involves 2 steps:
* Find the correct location
* Do the steps to add a new node
Must maintain “search” structure




Finding the Correct Location

Start with
@ this tree




Finding the Correct Location

Where would
@ 4 be added?




Finding the Correct Location

To the top

AN ,
@ doesn’t work

)

AN

N




Finding the Correct Location

~
)

e @\

AN

In the middle

\ doesn’t work

&




Finding the Correct Location

©
N
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Finding the Correct Location

Must maintain “search” structure
- Everything to left is less than current
- Everything to right is greater than current

Adding at the “bottom” guarantees
we keep search structure.

We’ll recurse to get to the “bottom”
(i.e. when current = nil)




Finding the Correct Location

i1f (current = nil)
DO “ADD NODE” WORK HERE
elseif (current”.data > value to add) then
// recurse left
Insert (current”.left, value to add)
else
// recurse right
Insert (current”.right, value to add)
endif




Adding the Node

Current is an in/out pointer
- We need information IN to evaluate current

- We need to send information OUT because
we’re changing the tree (adding a node)

Once we’ve found the correct location:
- Create a new node

- Fill in the data field
(with the new value to add)

- Make the left and right pointers point to nil
(to cleanly terminate the tree)




Adding the Node

current <- new (Node)
current”.data <- value to add
current”.left <- nil
current”.right <- nil




The Entire Module

procedure Insert(cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert(cur”®.right, data in)
endif
endprocedure // Insert




Tracing Example

The following example shows a trace of
the BST insert.

- Begin with an empty BST (a pointer)

- Add elements 42, 23, 35, 47 in the
correct positions.




Head iot Ptr toa Node
head <- NIL
Insert (head, 42)




Head iot Ptr toa Node head
head <- NIL
Insert (head, 42)




Head iot Ptr toa Node head
head <- NIL
Insert (head, 42)




Head iot Ptr toa Node head
head <- NIL
Insert (head, 42)




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert (cur”.right, data in)
endif
endprocedure // Insert

head




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert (cur”.right, data in)
endif
endprocedure // Insert

head




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert (cur”.right, data in)
endif
endprocedure // Insert

42

head




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert (cur”.right, data in)
endif
endprocedure // Insert

head




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert (cur”.right, data in)
endif
endprocedure // Insert

head




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert (cur”.right, data in)
endif
endprocedure // Insert

head




Insert (head, 23)
Insert (head, 35)
Insert (head, 47)

head




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
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endif
endprocedure // Insert

data_in = 23

head




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
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cur”.data <- data in
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cur”.right <- NIL
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Insert (cur”.right, data in)
endif
endprocedure // Insert

N
data_in (= 23)

(

head




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
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cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert(cur”.left, data in)
else
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endif
endprocedure // Insert

data_in = 23

head




procedure Insert (

cur iot in/out Ptr toa Node,
data in jiot in num)
if (cur = NIL) then
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cur”.data <- data in
cur”®.left <- NIL
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elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”®.right, data in)
endif
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data_in = 23

head




procedure Insert (

cur iot in/out Ptr toa Node,
data in jiot in num)
if (cur = NIL) then
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cur”.data <- data in
cur”®.left <- NIL
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elseif (cur”.data > data in)
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else
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data_in = 23
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procedure Insert (

cur iot in/out Ptr toa Node,
data in jiot in num)
if (cur = NIL) then
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cur”.data <- data in
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Insert (cur”®.right, data in)
endif

endprocedure // Insert
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procedure Insert (
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data in jiot in num)
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procedure Insert (
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data in jiot in num)
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cur”.data <- data in
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Insert (cur”®.left, data in)
else
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procedure Insert (

cur iot in/out Ptr toa Node,
data in jiot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”®.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
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endif
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procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert (cur”.right, data in)
endif
endprocedure // Insert

data_in = 23

head




Insert (head, 23)
Insert (head, 35)
Insert (head, 47)

head




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert (cur”.right, data in)
endif
endprocedure // Insert

data in = 35

head




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert (cur”.right, data in)
endif
endprocedure // Insert

P
data in (= 35)
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head




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert (cur”.right, data in)
endif
endprocedure // Insert

data in = 35

head




procedure Insert (

cur iot in/out Ptr toa Node,
data in jiot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”®.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”®.right, data in)
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endprocedure // Insert

data in = 35
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procedure Insert (

cur iot in/out Ptr toa Node,
data in jiot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”®.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”®.right, data in)
endif

‘endprocedure // Insert

P
data in (= 35)
_ N—

head
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procedure Insert (

cur iot in/out Ptr toa Node,
data in jiot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”.right, data in)
endif

‘endprocedure // Insert

data in = 35

head




procedure Insert (

cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”*.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert (cur”.right, data in)
endif

endprocedure // Insert

data in = 35

head




procedure Insert (

cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”*.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert (cur”.right, data in)
endif

endprocedure // Insert

data in = 35

head




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”*.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert (cur”.right, data in)
endif
endprocedure // Insert

data in = 35

head




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”.left, data in)
else
Insert (cur”.right, data in)
endif
endprocedure // Insert

data in = 35

head




| head

procedure Insert (
cur iot in/out Ptr toa Node,

data in iot in num) 42
if (cur = NIL) then — 1 |
cur <- new (Node) /71 \
cur”.data <- data in // >¢
cur”.left <- NIL 2’3
cur”.right <- NIL —
elseif (cur”.data > data in)
Insert (cur”.left, data in) / 1\
else \\Z \
Insert (cur”.right, data in) 35
endif SR
‘endprocedure // Insert 7|\

data in = 35




| head

procedure Insert (
cur iot in/out Ptr toa Node,

data in iot in num) 42
if (cur = NIL) then — 1 |
cur <- new (Node) /1 \
cur”.data <- data in // >¢
cur”.left <- NIL 2’3
cur”.right <- NIL

elseif (cur”.data > data in) Bl
Insert (cur”.left, data in) [ 1\

else \\Z \
Insert (cur”.right, data in) 35

endif —

‘endprocedure // Insert 7|\

data in = 35




procedure Insert (

cur iot in/out Ptr toa Node,
data in jiot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”®.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”®.right, data in)
endif

endprocedure // Insert

data in = 35

head




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”®.right, data in)
endif
endprocedure // Insert

head

data in = 35




head

Insert (head, 23)
Insert (head, 35) 42
Insert (head, 47) —




Continue?




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”®.right, data in)
endif
endprocedure // Insert

head

data in = 47




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”®.right, data in)
endif
endprocedure // Insert

head

—~
data in (= 47)
_ N—




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”.right, data in)
endif
endprocedure // Insert

head

data in = 47




procedure Insert (

cur iot in/out Ptr toa Node,
data in jiot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”®.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”®.right, data in)
endif

‘endprocedure // Insert

head

data in = 47




procedure Insert (

cur iot in/out Ptr toa Node,
data in jiot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”®.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”®.right, data in)
endif

‘endprocedure // Insert

head

data in = 47




procedure Insert (

cur iot in/out Ptr toa Node,
data in jiot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”®.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”®.right, data in)
endif

‘endprocedure // Insert

data_in = 47

head




procedure Insert (

cur iot in/out Ptr toa Node,
data in jiot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”®.right, data in)
endif

‘endprocedure // Insert

head

data in = 47




procedure Insert (

cur iot in/out Ptr toa Node,
data in jiot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”®.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”®.right, data in)
endif

‘endprocedure // Insert
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data in = 47




procedure Insert (

cur iot in/out Ptr toa Node,
data in jiot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”®.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”®.right, data in)
endif

endprocedure // Insert

head

data in = 47




procedure Insert (
cur iot in/out Ptr toa Node,
data in iot in num)
if (cur = NIL) then
cur <- new (Node)
cur”.data <- data in
cur”.left <- NIL
cur”.right <- NIL
elseif (cur”.data > data in)
Insert (cur”®.left, data in)
else
Insert (cur”®.right, data in)
endif
endprocedure // Insert

head

data in = 47




Insert (head, 23)
Insert (head, 35)
Insert (head, 47)

head




Summary

Preserve “search” structure!
Inserting involves 2 steps:
- Find the correct location

* For a BST insert, always insert at the
“bottom” of the tree

- Do commands to add node
* Create node
- Add data
- Make left and right pointers point to nil




Questions?




Deleting from a Binary Search Tree

(BST)




The Scenario

* We have a Binary Search Tree and
want to remove some element based
upon a match.

Must preserve “search” property

Must not lose any elements (i.e. only
remove the one element)




BST Deletion

- Search for desired item.

 If not found, then return NIL or print error.

If found, perform steps necessary to
accomplish removal from the tree.




Four Cases for Deletion

Delete a leaf node

Delete a node with only one child (left)
Delete a node with only one child (right)
Delete a node with two children

Cases 2 and 3 are comparable and only
need slight changes in the conditional
statement used




Delete a Leaf Node

50

Simply use an “in/out”
pointer and assign it

to “nil”. This will

remove the node from 14
the tree.

cur <- nil

71

116




Delete a Leaf Node

50
Simply use an “in/out”
pointer and assign it
to “nil”. This will
remove the node from 14 9
i71
6

the tree.

cur <- nil

Let’s delete 42.

13 z

4

108

116




Delete a Leaf Node

50

Simply use an “in/out”
pointer and assign it

to “nil”. This will

remove the node from 14
the tree.

cur <- nil

now nothing points
to the node.

Move the pointer; . m
t+4

i71
6

13 z

94

108

116




Delete a Leaf Node

50

Simply use an “in/out”
pointer and assign it

to “nil”. This will

remove the node from 14
the tree. :L

cur <- nil

The resulting tree.

71

116

108




Delete a Node with One Child

R

Determine if it has a left
or a right child.

Use an “in/out” pointer. 50
Point the current :L!
pointer to the
appropriate child: 42
cur <- cur”.left child

or

cur <- cur”.right child




Delete a Node with One Child

Use an “in/out” pointer. 50

Determine if it has a left
or a right child.

Point the current
pointer to the

appropriate child: 42 71
cur <- cur”.left child
or

cur <- cur”.right child 66

Let’s delete 14.

.

j116
|108




Delete a Node with One Child

Use an “in/out” pointer. 50

Determine if it has a left
or a right child.

Point the current '

pointer to the :I: \

appropriate child: 42 71

cur <- cur”.right child

Move the pointer; now 66
nothing points to the
node.

N 94

108

116




Delete a Node with One Child

Use an “in/out” pointer. 50

Determine if it has a left

or a right child. 49 94

Point the current
pointer to the
appropriate child: 71

cur <- cur”.right child

The resulting tree. 66

j116
|108




Delete a Node with One Child

Use an “in/out” pointer. 50

Determine if it has a left
or a right child. 12
Point the current :L%\
pointer to the
appropriate child: 42
cur <- cur”.left child

or

cur <- cur”.right child

94

j116
|108

Let’s delete 71.




Delete a Node with One Child

Use an “in/out” pointer. 50

Determine if it has a left
or a right child. 12
Point the current :L%\ /E\
pointer to the
appropriate child: 42
cur <- cur”.left child
v

Move the pointer; now 6 108
nothing points to the
node.

”:m




Delete a Node with One Child

Use an “in/out” pointer. 50

Determine if it has a left
or a right child. 12 o4
Point the current :L%\
pointer to the
appropriate child: 42 e 116
cur <- cur”.left child

i 108

The resulting tree.




Delete a Node with Two Children

Copy a replacement
value from a descendant

node. 14
- Largest from left
- Smallest from right :L
42

Then delete that
descendant node to
remove the duplicate value.
- We know this will be an
easier case.

66

71

j116
|108




Delete a Node with Two Children

/-\ Let’s delete 50.
i 14 i 94

i 42 i 71 ’116
i 66 i 108




Delete a Node with Two Children

Look to the left
sub-tree.
i 14 i 94
i 42 i 71 j116
i 66 i 108




Delete a Node with Two Children

66

71

94

116

108

Find and copy the
largest value

(this will erase the
old value but creates
a duplicate).




Delete a Node with Two Children

The resulting tree
so far.
i 14 i 94
i 42 i 71 j116
i 66 i 108




Delete a Node with Two Children

Now delete the
duplicate from
the left sub-tree.

94

71 116

108




Delete a Node with Two Children

42

94

71

66 108

116

The final resulting
tree — still has search
structure.




Delete a Node with Two Children

50
Let’s delete 94.
i 14 .
i 42 i 71 ’116
i 66 i 108




Delete a Node with Two Children

50
Look to the right
sub-tree.
i 14 .
i 42 i 71 ’116
i 66 i 108




Delete a Node with Two Children

o e

66

Find and copy the
smallest value

(this will erase the
old value but creates
a duplicate).




Delete a Node with Two Children

50
The resulting tree
so far.
i 14 .
i 42 i 71 j116
i 66 i 108




Delete a Node with Two Children

50

!

66

71

Now delete the
duplicate from
the left sub-tree.

116




14

Delete a Node with Two Children

50

42

66

108

/\

71 116

The final resulting
tree — still has search
structure.




Summary

Deleting a node from a binary search tree
involves two steps:

- Search for the element
- Then perform the deletion

We must preserve the search structure and only
delete the element which matches.

Four cases:

- Deleting a leaf node

- Deleting a node with only the left child
- Deleting a node with only the right child
- Deleting a node with both children




Questions?







Algorithms

AVL Tree



Balanced binary tree

The disadvantage of a binary search tree is that its height car
be as large as N-1

This means that the time needed to perform insertion and
deletion and many other operations can be O(N) in the worst
case

We want a tree with small height
A binary tree with N node has heigtit ®(log N)

Thus, our goal is to keep the height of a binary search tree
O(log N)

Such trees are called binary search trees. Examples
are AVL tree, red-black tree.



Binary Search Tree - Best Time

e All BST operations are O(h), where d is tree
depth

e minimumdish=|log,N| forabinary tree
with N nodes
m What Is the best case tree?
m \What Is the worst case tree?

e S0, best case running time of BST operations
IS O(log N)




Binary Search Tree - Worst Time

e Worst case running time is O(N)

= What happens when you Insert elements in
ascending order?

o Insert: 2, 4, 6, 8, 10, 12 into an empty BST

s Problem: Lack of‘balance”:
o compare depths of left and right subtree

s Unbalanced degenerate tree






Approaches to balancing trees

e Don't balance
s May end up with some nodes very deep

e Strict balance
= The tree must always be balanced perfectly

e Pretty good balance
= Only allow a little out of balance

e Adjust on access
s Self-adjusting



Balancing Binary Search Trees

e Many algorithms exist for keeping binary
search trees balanced

s Adelson-Velskii and Landis®(VL) trees
(height-balanced trees)

m Splay treeand other self-adjusting trees
s B-treesand other multiway search trees



AVL Tree is...

e Named afteAdelson¥ elskil andL andis
e the first dynamically balanced trees to be
propose

e Binary search tree withalance condition in
which the sub-trees of each node can differ by
at most lin their height




Definition of a balanced tree

e Ensure the depth = O(log N)

e Take O(log N) time for searching, insertion,
and deletion

e Every node must have left & right sub-trees of
the same height



An AVL tree has the following
properties:

1. Sub-trees of each
node can differ by
at most 1 in their l f

height b b7
2. Every sub-trees is i l
an AVL tree




AVL tree?

Each left sub-tree has
height 1 greater than each
right sub-tree

NO
Left sub-tree has height 3,

but right sub-tree has height
1



AVL tree

Height of a node

e The height of a leaf is 1. The height of a null
pointer Is zero.

e The height of an internal node is the maximun
height of its children plus 1

Note that this definition of height is different from the one we

defined previously (we defined the height of a leaf as zero
previously).






AVL Trees




AVL Tree

o

AVL Tree
o@iko
/

@ Not an AVL Tree

AVL Tree



Height of an AVL Tree

e Fact: Theheight of an AVL tree storing n keys is O(log n).

e Proof: Let us bounadh(h): the minimum number of internal nodes
of an AVL tree of height h.

e We easily see thatn(l) =1and n(2) =2

e Forn> 2, an AVL tree of height h contains the root node, one A
subtree of height n-1 and another of heigt n-

e Thatis, n(h) =1+ n(h-1) + n(R)

e Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8né)s-... (by induction),
n(h) > 2n(h-2i)

e Solving the base case we get: n(h) ¥2

e Taking logarithms: h < 2log n(h) +2

e Thus the height of an AVL tree is O(log n)



AVL - Good but not Perfect
Balance

e AVL trees are height-balanced binary search
trees

e Balance factoof a node
= height(left subtree) - height(right subtree)

e An AVL tree has balance factor calculated at
every node

m For every node, heights of left and right subtree
can differ by no more than 1

m Store current heights in each node



Height of an AVL Tree

e N(h) =minimumnumber of nodes in an AVL
tree of height h.

e Basis
s N(O) =1, N(1) =2
¢ Induction
m N(h) =N(h-1) + N(h-2) + 1

o SOlUtiOn(recall Fibonacci analysis)
a N(h) >0 (¢~ 1.62) A

h




Height of an AVL Tree

e N(h)>¢" (¢~ 1.62)

e Suppose we have n nodes in an AVL tree of
height h.
m N> N(N) (because N(h) was the minimum)

= N> ¢" hencelog, n>h (relatively well balanced
tree!!)

s h<1.44 logn (i.e.,Find takes O(log))



Insertion

Insert 6

/ ) ©
Imbalance at 8

Perform rotation with 7




Deletion

Delete 4

Imbalance at 3
Perform rotation with 2

Imbalance at 5 ()
Perform rotation with 8




Key Points

e AVL tree remainbalancedy applying
rotations, therefore it guarante@S8og N)
search time in a dynamic environment

e Tree can be re-balanced in at mosibg N)
time



Searching AVL Trees

e Searching an AVL tree Is exactly the same as
searching a regular binary tree

= all descendants to the right of a node are greater
than the node

s all descendants to the left of a node are less than
the node



Inserting in AVL Tree

e Insertion is similar to regular binary tree

= keep going left (or right) in the tree until a null
child is reached

= Insert a new node in this position
o an inserted node is always a leaf to start with

e Major difference from binary tree
s must check if any of the sub-trees in the tree have

become too unbalanced

o search from inserted node to root looking for any node
with a balance factor of 2



Inserting in AVL Tree

e A TEW POINLS abOoUL tree INserts

= the insert will be done recursively

= the Insert call will return true If the height of the
sub-tree has changed

o since we are doing an insert, the height of thetsed-
can only increase
m If insert() returns true, balance factor of current
node needs to be adjusted
o balance factor = height(right)height(left)
¢ left sub-tree increases, balance factor decreases by 1
¢ right sub-tree increases, balance factor increases by 1
= If balance factor equals 2 for any node, the sub-
tree must be rebalanced



Inserting In AVL Tree
) o,
@ @ insert(V) @ @

This tree needs to be fixed!



Re-Balancing a Tree

e To check If a tree needs to be rebalanced

= Start at the parent of the inserted node and journe
up the tree to the root

o 1f a node’s balance factor becomes 2 need to do a
rotation in the sub-tree rooted at the node

o once sub-tree has been re-balanced, guaranteed that tr
rest of the tree is balanced as well
& can just return false from the insert() method

m 4 possible cases for re-balancing

o only 2 of them need to be considered
o other 2 are identical but in the opposite direction



Insertions In AVL Trees

Let the node that needs rebalancing be «.

There are 4 cases:
Outside Cases (require single rotation) :
1. Insertion into left subtree of left child of «.
2. Insertion into right subtree of right child of .

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of «.
4. Insertion into left subtree of right child of «.

The rebalancing is performed through four separate
rotation algorithms.



AVL Insertion: Outside Case

Consider a valid
AVL subtree




AVL Insertion: Outside Case

Inserting into X
destroys the AVL
property at node |




AVL Insertion: Outside Case

Do a “right rotation”




Sinagle right rotation

Do a “right rotation”




Outside Case Completed

“Right rotation” done!
(“Left rotation” is mirror
symmetric)

AVL property has been restored!



AVL Insertion: Inside Case

Consider a valid
AVL subtree




AVL Insertion: Inside Case

Does °right rotation”

Inserting into Y
restore balance?

destroys the
AVL property
at node |




AVL Insertion: Inside Case

“Right rotation”
does not restore
balance... now k is
out of balance




AVL Insertion: Inside Case

Consider the structure
of subtree Y...




AVL Insertion: Inside Case

Y = node | and
subtrees V and W




AVL Insertion: Inside Case

\

, We will do a left-right
“double rotation” . . .




Double rotation : first rotation

left rotation complete




Double rotation : second
rotation

Now do a right rotation




Double rotation : second
rotation

right rotation complete

Balance has been
restored




Insert 3‘

AVL Trees Example

Insert 2

Insert 1| (non-AVL) AVL

’;E)

&9

‘311121& (D}z%

rotation



AVL Trees Example

Insert 4 Insert 5| (non-AVL)

4 3\ Single
rotation
\




AVL Trees Example

Insert 6 (non-AVL) AVL Insert 7/ (non-AVL)

/ N\
s X\O\ (&)
@{ D i
()




AVL Trees Example

Insert 16

Insert 15

‘-311121&
rotation o o

(nun AVL)




AVL Trees Example

Step 1: Rotate child and grandchild Step 2: Rotate node and new child (AVL

> of
Dole \ (¢,
DO W O S0d &

(5, O ®




AVL Trees Example

Insert 14 (non-AVL) Step 1: Rotate child and Step 2: Rotate node and
grandchild new child (AVL)

@ ©)

o Y = 39/ 0 o
®b\. & QNG

@ ONNCES
0




Example
—adnsert 3inta the AV _tree

ax>




Example
—ansert 5 inta the AV _tree




AVL Trees: Exercise

e INnsertion order:
m 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, b~



Deletion X in AVL Trees

e Deletion:
m Case 1: if X Is a leaf, delete X
m Case 2: if X has 1 child, use it to replace X

m Case 3: if X has 2 children, replace X with its
iInorder predecess@and recursively delete it)

e Rebalancing

5/22/2012



Delete 55 (case 1)




Delete 55 (case 1)




Delete 50 (case 2)




Delete 50 (case 2)




Delete 60 (case 3)




Delete 60 (case 3)




Delete 55 (case 3)

prev




Delete 55 (case 3)




Delete 50 (case 3)




Delete 50 (case 3)




Delete 40 (case 3)




Delete 40 : Rebalancing

5/22/2012



Delete 40: after rebalancing

Single rotation Is preferred!



AVL Tree: analysis

e The depth of AVL Trees Is at most logarithmic

e S0, all of the operations on AVL trees are alsc
logarithmic.

e The worst-case height is at most 44 percent
more than the minimum possible for binary
trees.






Priority Queues

Linked-list

.,

head

* Insert

.,

head

10

15

10

» 15




Priority Queues

Supports the following operations.
Insert element x.
Return min/max element.
Return and delete minimum/maximum element.
Increase/Decrease key of element x to k.

Max/Min-HEAPIFY
BUILD-Max/Min-HEAP
HEAPSORT

Applications.
Dijkstra's shortest path algorithm.
Prim's MST algorithm.
Event-driven simulation.
Huffman encoding.
Heapsort.



Time Complexity

Insert: O(n)
Delete: O(1)
n deletions and O(n?)

Insertions:



Heap

A max (min) heap is a complete
binary tree such that the data stored

iIn each node Is greater (smaller) than
the data stored in its children, if any.




Heap Types

Max-heaps (largest element at root), have the max-heap property:
for all nodes i, excluding the root:
A[PARENT(i)] > A[i]

Min-heaps (smallest element at root), have the min-heap property:
for all nodes i, excluding the root:
A[PARENT(i)] ¢« A[i]



Binary Heap: Definition
Binary heap.

Almost complete binary tree.
— filled on all levels, except last, where filled from left to right

Min-heap ordered.
— every child greater than (or equal to) parent

D
(1 (e5)

(8) (o) G (3
(9 () (0 @ (@) () (e



Binary Heap: Properties

Properties.
Min element is in root.
Heap with N elements has height = [1og, N[

@ N=14
Height =3
(10 (15,

(8) (o) G (3
(9 () (0 @ (@) () (e






Larger than
its parent

¢ o

600

Not a heap



Missing left
child

Not a complete tree — Not a heap



Complete Binary Tree
O
S N
s o o o
O é 10 6 12

Where to add the next

node?
How to find it?




0110

0111
1000
1001
10 1010




13
14

Next

L

1110



Binary Heaps: Array Implementation

Implementing binary heaps.
Use an array: no need for explicit parent or child pointers.
- Parent (i) = [i/20
-~ Left (1) = 2i
-Right(i) = 2i + 1



Storing a Complete Binary Tree in an Array

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

for any node at index i

parent = i/2 left child =i ™2 right child = i*2+1



Binary Heap: Insertion

Insert element x into heap.
Insert into next available slot.

Bubble up until it's heap ordered.
— Peter principle: nodes rise to level of incompetence

D
(% (e5)

8) e G ()

@ @ @ @ @ @ @ 42 <:Z:nextfreeslot




Binary Heap: Insertion

Insert element x into heap.
Insert into next available slot.

Bubble up until it's heap ordered.
— Peter principle: nodes rise to level of incompetence

@ swap with parent

(10 (45)

(8) e G ()
@@ @ @ @€



Binary Heap: Insertion

Insert element x into heap.
Insert into next available slot.

Bubble up until it's heap ordered.
— Peter principle: nodes rise to level of incompetence

@ swap with parent

(10 (45)

(18)  (1s) (47) 42
@ @@ @ @ @ @@ 6



Binary Heap: Insertion

Insert element x into heap.
Insert into next available slot.

Bubble up until it's heap ordered.
— Peter principle: nodes rise to level of incompetence

@ stop: heap ordered

(10 2

@ @ @ G

@O O ®® @



Binary Heap: Decrease Key

Decrease key of element x to k.
Bubble up until it's heap ordered.

D
(1 (i2)

(8) e G ()

®) )@ @ 6D 6D 6D 6



Binary Heap: Delete Min

Delete minimum element from heap.
Exchange root with rightmost leaf.

Bubble root down until it's heap ordered.
— power struggle principle: better subordinate is promoted

06

(10 (a2,

(8) e G ()
(9 () (V) @ (@) (9 () G2



Binary Heap: Delete Min

Delete minimum element from heap.
Exchange root with rightmost leaf.

Bubble root down until it's heap ordered.
— power struggle principle: better subordinate is promoted

53

(10 (a2,

(8) e G ()
(69 @ @ @ @ & @ (9



Binary Heap: Delete Min

Delete minimum element from heap.
Exchange root with rightmost leaf.

Bubble root down until it's heap ordered.
— power struggle principle: better subordinate is promoted

53 exchange with left child

(10 (a2,

(8) (o) () G
(9 () (0 @ (@) () (e



Binary Heap: Delete Min

Delete minimum element from heap.
Exchange root with rightmost leaf.

Bubble root down until it's heap ordered.
— power struggle principle: better subordinate is promoted

@ exchange with right child

53 @
(78) (18 () (D
(9 () (0 () () (09 (0



Binary Heap: Delete Min

Delete minimum element from heap.
Exchange root with rightmost leaf.

Bubble root down until it's heap ordered.
— power struggle principle: better subordinate is promoted

@ stop: heap ordered

(42

(78, (4a7) (85

® 6D @ @ 6 6 @




Binary Heap: Delete /Extract Max
6000

delete
Last Node# 14 1110




Binary Heap: Delete /Extract Max

HEAP-EXTRACT-MAX(A)
I if A.heap-size < |

i error “heap underflow™

3 max = A[l]

4  A[l] = A[A.heap-size]

3  A.heap-size = A.heap-size — |
6 MAX-HEAPIFY(A. 1)

7 return max

28



Max-Heapify Example

? —> <« ')

?
\‘ left child is
reater

children of 20028%22*2*22%1%145 3, 3

right child is
greater

ijndex 1 2 3 4 5 6 7 8 8 10 11 12
value 86 g5 41 13 44 32 29 9 10 17 23 21



Procedure MaxHeapify

MaxHeapify(A, i)

. 1= left(i); Assumption:
Left(/) and Right(/
. r=right(7); eft(/) and Right(/) are

max-heaps.
. if (I £ heap-size|A] && A[l] > A[i])

largest = I,

. M (7 < heap-size[A] && A[r] > A[largest])
largest = r;
. if (largest I= i)
Swap(A[i], A[largest])
10. MaxHeapify(A, largest)

1
2
3
4
5. else largest=1I,
6
7
8
9




MaxHeapify — Example

MaxHeapify(A, 2)




Running Time for MaxHeapify

MaxHeapify(A., i)

1. [=left(i);
2. r=right(i);

: : : Time to fix node i
3. if (I < heap-size[A] && A[I] > A[i]) | o e ohidren =
4 largest = I, o(1)
5. else largest=1I;

: : | PLUS
6. if (7 < heap-size[A] && A[r] > A[largest])
7 largest = r;
8. if (largest |= i) | Time to fix the

: _ subtree rooted at

9 Swap(A[i], A[largest]) one of /'s children =
10. MaxHeapify(A, largest) - T(size of subree at

* largest)



Running Time for MaxHeapify(A, n)

T(n) = T(largest) + ©O(1)

largest < 2n/3 (worst case occurs when the last
row of tree is exactly half full)

I(n) £ T(2n/3) + ©(1) O T(n) = O(lg n)

Alternately, MaxHeapify takes O(h) where h is
the height of the node where MaxHeapify is
applied.




Building a heap

Use MaxHeapify to convert an array A into a max-heap.
How?

Call MaxHeapify on each element in a bottom-up
manner.

BuildMaxHeap(A)
1. heap-size|A] = length[A]

2. for i = Uength[A]/2Uldown to 1
3. do MaxHeapify(A, i)




BuildMaxHeap — Example

Input Array:

241121123 (]22(|36(|29(/30||34|28||27

Initial Heap:
(not max-heap)




BuildMaxHeap — Example

MaxHeapify([10/2= 5)
MaxHeapify(4

)
MaxHeapify(3)
MaxHeapify(2)
MaxHeapify(1)




Running Time of BuildMaxHeap

BuildMaxHeap(A)
1. heap-size|A] = length|[A]

2. for i = Uength[A]/2Uldown to 1
3. do MaxHeapify(4, i) )> ©(logn) | » ©(n logn)

Cost of a MaxHeapify call x No. of calls to MaxHeapify
O(lg n) x O(n) = O(nlg n)



Heapsort

Goal:

Sort an array using heap representations

Idea:
Build a max-heap from the array

Swap the root (the maximum element) with the last element in the
array

“Discard” this last node by decreasing the heap size
Call MAX-HEAPIFY on the new root

Repeat this process until only one node remains



Example: A=[7,4, 3,1, 2]

2 (D
OO ORNIO ® O

MAX-HEAPIFY(A, 1, 4) MAX-HEAPIFY(A, 1, 3) MAX-HEAPIFY(A, 1, 2)

@@@ ®
Qi i@ G A|1]2]3]4]7
® O ® O

MAX-HEAPIFY(A, 1, 1)



Heapsort(A)

HeapSort(A)
1. Build-Max-Heap(A)

2. for i = length[A] downto 2

swap( A[1], Al{] );
heap-size[A] = heap-size[A] — 1;
MaxHeapify(A, 1);

3.
4,
5




Algorithm Analysis

HeapSort(A)
1. Build-Max-Heap(A) O(n)
2. for i = length[A] downto 2
3. swap( A[1], A[i] );
4, heap-size[A] = heap-size[A] — 1; (n -1)
5 MaxHeapify(A, 1);
©(logn)

©(n loagn)

In-place
Not Stable

Build-Max-Heap takes O(n) and each of the n-1 calls to Max-Heapify
takes time O(la n)



Binary Heap: Delete /Extract Max
6000

delete
Last Node# 14 1110




Binary Heap: Delete /Extract Max

HEAP-EXTRACT-MAX(A)

| if A.heap-size < |

2 error “heap underflow™

3 max = A[l]

A[l] = A[A.heap-size]
A.heap-size = A.heap-size — |
MAX-HEAPIFY (A, 1)

return max

L T S

~J O°

43



Analysis Binary Heap: Delete /Extract Max

HEAP-EXTRACT-MAX(A)

| if A.heap-size < |

2 error “heap underflow™
3 max = A[l] ©(1)
4 A[l] = A[A.heap-size]

5 A.heap-size = A.heap-size — |
6 MAX-HEAPIFY(A, 1)

7 return max ©(logn)

©( logn)

44



Binary Heap: Return/Find Max

HEAP-MAXIMUM(A)

|  return A[l]

45



Analysis Binary Heap: Return/Find Max

HEAP-MAXIMUM(A)

|  return A[l] ©(1)

©(1)



Binary Heap: Increase Key

eJoJo ojoJo

The node i has its key increased to 15.

47



Binary Heap: Increase Key

HE.—\P-I.\ICREASE-KEY(.—4.f.kC’}‘)
if key < Ali]

Ali] = key

while/ > | and A[PARENT(i)] < A[i]
exchange A[i] with A[PARENT(i)]
i = PARENT(i)

N S R S

N n

error “new key is smaller than current key™

48



Analysis Binary Heap: Increase Key

HEAP-INCREASE-KEY(A,1, ke’.\')

| if key < Ali]

2 error “new key 1s smaller than current key™
3 Ali] = key

4 whilei > | and A[PARENT(i)] < A[i]

5 exchange A[i] with A[PARENT({)]

6 i = PARENT(i)

The running time of HEAP-INCREASE-KEY on an n-element
heap is O(lg n), since the path traced from the node to the
root has length O(ilg n).

49



Binary Heap: Insertion

Insert element x into heap.
Insert into next available slot.

Bubble up until it's heap ordered.
— Peter principle: nodes rise to level of incompetence

(%8)
(o (75)

(8) () () ()

@ @ @ @ @ @ @ 89 <:Z:nextfreeslot




Binary Heap: Insertion

Insert element x into heap.
Insert into next available slot.

Bubble up until it's heap ordered.
— Peter principle: nodes rise to level of incompetence

@ swap with parent

(8. (75)

(8) () () ()
(39 @ 6 @ @ @ ) @



Binary Heap: Insertion

Insert element x into heap.
Insert into next available slot.

Bubble up until it's heap ordered.
— Peter principle: nodes rise to level of incompetence

@ swap with parent

(8. (75)

(78) (68) (67) 89
(339 @) v (@) G (9 (o 63



Binary Heap: Insertion

Insert element x into heap.
Insert into next available slot.

Bubble up until it's heap ordered.
— Peter principle: nodes rise to level of incompetence

@ stop: heap ordered

@ 89

(8) () () (5

) @ 6@ @ GG G @



Binary Heap: Insertion

MAX-HEAP-INSERT(A, key)

| A.heap-size = A.heap-size + |
2  A[A.heap-size] = —o¢
3 HEAP-INCREASE-KEY (A, A.heap-size, key)

54



Analysis Binary Heap: Insertion

MAX-HEAP-INSERT (A, key)

| A.heap-size = A.heap-size + |
2  AlA.heap-size] = —o¢
3 HEAP-INCREASE-KEY(A, A.heap-size, key)

The running time of Insert on an n-element heap is O(lg n),
since the path traced from the node to the root has length

O(lg n).

55



Priority Queues

Build -heap

insert

find-min

delete-min

union

decrease-key

delete

is-empty

N
log N

log N

log N

log N




Disk Storage

What is a multiway tree?
What is a B-tree?

Why B-trees?

Insertion in a B-tree

Deletion in a B-tree

B-Trees



Disk Storage

Data is stored on disk (i.e., secondary memory) in blocks.

A block is the smallest amount of data that can be accessed on a
disk.

Each block has a fixed number of bytes — typically 512, 1024, 2048,
4096 or 8192 bytes

Each block may hold many data records.

\ 289080\
\data\
\22820a\
\ data\

empty

Record 1

Record 2

Record 3
empty

empty

Record 4

empty




Motivation for studying Multi-way and B-trees

A disk access is very expensive compared to a typical
computer instruction (mechanical limitations) - One disk
access is worth about 200,000 instructions.

Thus, When data is too large to fit in main memory the
number of disk accesses becomes important.

Many algorithms and data structures that are efficient for
manipulating data in primary memory are not efficient for
manipulating large data in secondary memory because
they do not minimize the number of disk accesses.

For example, AVL trees are not suitable for representing
huge tables residing in secondary memory.

The height of an AVL tree increases, and hence the
number of disk accesses required to access a particular
record increases, as the number of records increases.



What is a Multi-way tree?
A multi-way (or m-way) search tree of order m is a tree in which
- Each node has at-most m subtrees, where the subtrees may be

empty.
- Each node consists of at least 1 and at most m-1 distinct keys

- The keys in each node are sorted.

K1 k2 | k3 km- |, [km] |
- — / N,

S A A A A

key < k1 k1 <key < k2 k2 < key < k3 km-2 < key < km-1 key > km-1

The keys and subtrees of a non-leaf node are ordered as:
10, k1, T1, k2, T2, ..., km-1, Tm-1 such that:
- All keys in subtree TO are less than k1.
- All keys in subtree Ti, 1 <=i <= m - 2, are greater than ki but
less than ki+1.
- All keys in subtree Tm-1 are greater than km-1



The node structure of a Multi-way tree

bk Te] P [k [P | R TKE ] (K pr | P I

g-1 -1 q
’ .

9 - _
trea
' refereneel ' \
data data i

reference reference referenee reference reference
referenee v

tree
reference

X<k, K, <X<K Ko <X

0= 1

Note:

- Corresponding to each key there is a data reference that refers
to the data record for that key in secondary memory.

- In our representations we will omit the data references.

- The literature contains other node representations that we will
not discuss.



Examples of Multi-way Trees

50|60 80

16| 18

g)

35 58|59 63(70|73 96
/ \

52|54 61|62 / / / \

K7 4 20 24 28 1 30

5| bb

Note: In a multiway tree:
- The leaf nodes need not be at the same level.

- A non-leaf node with n keys may contain less than n + 1 non-
empty subtrees.



What is a B-Tree?

A B-tree of order m (or branching factor m), where m > 2, is
either an empty tree or a multiway search tree with the
following properties:
- The root is either a leaf or it has at least two non-empty
subtrees and at most m non-empty subtrees.

- Each non-leaf node, other than the root, has at least
m/2 non-empty subtrees and at most m non-empty
subtrees. (Note: x is the lowest integer > x).

- The number of keys in each non-leaf node is one less
than the number of non-empty subtrees for that node.

- All leaf nodes are at the same level; that is the tree is
perfectly balanced.



What is a B-tree? (cont'd)

For a non-empty B-tree of order m:

This may be zero, if the node is a leaf as well

R L Non-root node
Miniraum nunber of keys / / [mi2]-1
Minimum number of non-empty subtrees 2y %f 2]

Maximum number of kevs m-1

Mazimum number of non-empty subtrees f1l / /m
@g{vill be zero if the node is a leaf as well




Example: A B-tree of order 4

B-Tree Examples
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Example: A B-tree of order 5
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The data references are not shown.

The leaf references are to empty subtrees




More on Why B-Trees

B-trees are suitable for representing huge tables residing in
secondary memory because:

1. With a large branching factor m, the height of a B-tree is low

resulting in fewer disk accesses.
Note: As m increases the amount of computation at each node increases;
however this cost is negligible compared to hard-drive accesses.

3. The branching factor can be chosen such that a node
corresponds to a block of secondary memory.

4. The most common data structure used for database indices is
the B-tree. An index is any data structure that takes as input a
property (e.g. a value for a specific field), called the search key,
and quickly finds all records with that property.



Comparing B-Trees with AVL Trees

The height h of a B-tree of order m, with a total of n keys, satisfies
the inequality:
h<=1+log m/2 ((n+1)/2)

If m =300 and n = 16,000,000 then h =4.

Thus, in the worst case finding a key in such a B-tree requires 3 disk
accesses (assuming the root node is always in main memory ).

The average number of comparisons for an AVL tree with n keys is
log n + 0.25 where n is large.
If n = 16,000,000 the average number of comparisons is 24.

Thus, in the average case, finding a key in such an AVL tree
requires 24 disk accesses.



Insertion in B-Trees

OVERFLOW CONDITION:
A root-node or a non-root node of a B-tree of order m overflows
if, after a key insertion, it contains m keys.

Insertion algorithm:

If a node overflows, split it into two, propagate the "middle"” key
to the parent of the node. If the parent overflows the process

propagates upward. If the node has no parent, create a new
root node.

Note: Insertion of a key always starts at a leaf node.



Insertion in B-Trees

Insertion in a B-tree of odd order

Example: Insert the keys 78, 52, 81, 40, 33, 90, 85, 20, and 38 in this order in
an 1nitially empty B-tree of order 3

insert 78 insert 52 insert 81 insert 40

Lo
linsertﬂ
M 5 E\ insert 90 I—
ﬁfﬁhmm F'qﬁﬂ%

insert 38

—_
33

¥
] [] [2] [or]




subtree.

Insertion in B-Trees

Insertion in a B-tree of even order

At each node the insertion can be done in two different ways:
right-bias: The node is split such that its right subtree has more keys than the left

left-bias: The node is split such that its left subtree has more keys than the right

subtree.

Example: Insert the key 5 in the following B-tree of order 4.

30

"l

10

20

ol

25 50 | 70
right-bias insertion
10 | 30
20 | 25 5 | 70

left-bias insertion

20 | 30




B-Tree Insertion Algorithm

insertkey (x){
if(the key x is in the tree)
throw an appropriate exception;

let the insertion leaf-node be the currentNode;
insert x in its proper location within the node;

if(the currentNode does not overflow)
return;

done = false;
do{
if (m is odd) {
split currentNode into two siblings such that the right sibling rs has m/2 right-most keys,
and the left sibling Is has m/2 left-most keys;
Let w be the middle key of the splinted node;

}
else { /l mis even
split currentNode into two siblings by any of the following methods:
right-bias: the right sibling rs has m/2 right-most keys, and the left sibling Is has (m-1)/2 left-most keys.
left-bias: the right sibling rs has (m-1)/2 right-most keys, and the left sibling Is has m/2 left-most keys.
let w be the “middle” key of the splinted node;
}

if (the currentNode is not the root node) {
insert w in its proper location in the parent p of the currentNode;
if (p does not overflow)
done = true;
else

let p be the currentNode;
}

} while (! done && currentNode is not the root node);



B-Tree Insertion Algorithm - Contd

if (! done) {
create a new root node with w as its only key;
let the right sibling rs be the right child of the new root;
let the left sibling Is be the left child of the new root;

}

return;

}



Deletion in B-Tree

Like insertion, deletion must be on a leaf node. If the key to be deleted is notin a
leaf, swap it with either its successor or predecessor (each will be in a leaf).

The successor of a key k is the smallest key greater than k.
The predecessor of a key k is the largest key smaller than k.

IN AB-TREE THE SUCCESSOR AND PREDECESSOR, IF ANY, OF ANY KEY IS IN A LEAF

NODE
30 | 60
Example: Consider the
following B-tree of order
3:
20 34 | S0 70 | 78

o
/

a3 17 25 32 40 | 45 53 | 55 64 | 68 88 | 100
successor predecessor key
25 17 20
32 25 30
40 32 34
53 45 50
64 55 60
75 68 70
88 75 78




Deletion in B-Tree

UNDERFLOW CONDITION

A non-root node of a B-tree of order m underflows if, after a key
deletion, it contains m /2 -2 keys

The root node does not underflow. If it contains only one key and
this key is deleted, the tree becomes empty.



Deletion in B-Tree
Deletion algorithm:

If a node underflows, rotate the appropriate key from the adjacent right-
or left-sibling if the sibling contains atleast m /2 keys; otherwise perform
a merging.

o A key rotation must always be attempted before a merging

There are five deletion cases:
1. The leaf does not underflow.

2. The leaf underflows and the adjacent right sibling has atleast m/2 keys.
perform a left key-rotation

3. The leaf underflows and the adjacent left sibling has atleast m/2 keys.
perform a right key-rotation

4. The leaf underflows and each of the adjacent right sibling and the adjacent left
sibling has atleast m/2 keys.

perform either a left or a right key-rotation

5 The leaf underflows and each adiacent siblinahas m/2 -1 kevs



Deletion in B-Tree
Case1: The leaf does not underflow.

Example:

B-tree of order 4
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Delete 140
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Deletion in B-Tree (cont'd)

Case2: The leaf underflows and the adjacent right sibling has at least
m/2 Kkeys.

Perform a left key-rotation:
1. Move the parent key x that separates the siblings to the node with underflow
2. Move y, the minimum key in the right sibling, to where the key x was
3. Make the old left subtree of y to be the new right subtree of x.

X

= = = = o=
__," "‘*._
- .
F 9 s
¥

node with underflow

Example:
B-tree of order 5

........ 80,120 (130 ]r Delete 113

.

[} 128 |135142 |
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Deletion in B-Tree (cont'd)

Case 3: The leaf underflows and the adjacent left sibling has at least
m/2 keys.

Perform a right key-rotation:
1. Move the parent key x that separates the siblings to the node with underflow
2. Move w, the maximum key in the left sibling, to where the key x was
3. Make the old right subtree of w to be the new left subtree of x

X

.-"'T \-“-
- -
- F
W

node with underflow

Example:

B-tree of order 5

1 80120 NS0 Delete 135
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Deletion in B-Tree (cont'd)
Case 5:The leaf underflows and each adjacent siblinghas m/2 -1 keys.

g
I

Wi Wy W3 .. W Yi_ ¥2 ¥3--- ¥
[m/2]-1keys node with underflow [m/2]-1keys

merge node, sibling and the l
separating key x +

Vv

WWoW3 - W) XN ¥ 8y .- l‘-’kJ

If the parent of the merged node underflows, the merging process propagates
upward. In the limit, a root with one key is deleted and the height decreases

by one.

Note: The merging could also be done by using the left sibling instead of the right
sibling.



Deletion in B-Tree (cont'd)

Example: l B-tree of order 5

:/95 e \

1380y 382 | [[ 406,412 ] [j451472\] [ 403506 511 518 |

YY Y Y YYYYY O YYYVYY

Dele’teél\ ¢
395 | 480 \
!

380, 381 406 (430 (451 472 493 (306311 518
| ] | it el Blhiend | ki eall i
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The parent of the merged node does not underflow. The merging process
does not propagate upward.




Deletion in B-Tree (cont'd)
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Deletion : Special Case, involves rotation and merging

Example: Delete the key 40 in the following B-tree of order 3:
12

.
N
/

2 6 10 15 40

merge 15 and 20

rotate 8 and its right subtree 3
—
12 /
underflow ; -
4 8 / \
/ | z : K3

¥

¥




Deletion of a non-leaf node

Deletion of a non-leaf key can always be done in two different ways: by first swapping
the key with its successor or predecessor. The resulting trees may be similar or they
may be different.

Example: Delete the key 140 in the following partial B-tree of order 4:

B-tree of order 4

90 100 105 (110 152 | 186 194
Bl I I I I I I I I

vy
\ 1u*=‘,152 ~
Delete 140

I 1ut 110 | |1s {194 |

Ir IrIIrIr v v




B-Tree Deletion Algorithm

deleteKey (x) {
if (the key x to be deleted is not in the tree)
throw an appropriate exception;
if (the tree has only one node) {
delete x ;
return;
}
if (the key x is not in a leaf node)
swap x with its successor or predecessor;// each will be in a leaf node
delete x from the leaf node;
if(the leaf node does not underflow) // after deletion numKeys m/2 -1
return;
let the leaf node be the CurrentNode;
done = false;



B-Tree Deletion Algorithm

while (! done && numKeys(CurrentNode) m/2 -1){ //there is underflow
if (any of the adjacent siblings t of the CurrentNode has at least m /2 keys) {// ROTATION CASE
if (t is the adjacent right sibling) {
rotate the separating-parent key w of CurrentNode and t to CurrentNode;
rotate the minimum key of t to the previous parent-location of w;
rotate the left subtree of t, if any, to become the right-most subtree of CurrentNode;
}
else { //tis the adjacent left sibling
rotate the separating-parent key w between CurrentNode and t to CurrentNode;
rotate the maximum key of t to the previous parent-location of w;
rotate the right subtree of t , if any, to become the left-most subtree of CurrentNode;

}

done = true;

}
else {// MERGING CASE: the adjacent or each adjacent siblinghas m/2 -1 keys
select any adjacent sibling t of CurrentNode;

create a new sibling by merging currentNode, the sibling t, and their parent-separating key ;
If (parent node p is the root node) {
if (p is empty after the merging)

make the merged node the new root;

done = true;
} else
let parent p be the CurrentNode;

}
} I while

PR R



Max Heap Datastructure

Heap data structure is a specialized binary tree-based data structure. Heap
Is a binary tree with special characteristics. In a heap data structure, nodes
are arranged based on their values. A heap data structure some times also

called as Binary Heap.

There are two types of heap data structures and they are as follows...

1. Max Heap
2. Min Heap

Every heap data structure has the following properties...

Property #1 (Ordering): Nodes must be arranged in an order according to

their values based on Max heap or Min heap.

Property #2 (Structural): All levels in a heap must be full except the last

level and all nodes must be filled from left to right strictly.

Max Heap

Max heap data structure is a specialized full binary tree data structure. In a

max heap nodes are arranged based on node value.

Max heap is defined as follows...

Max heap is a specialized full binary tree in which every parent node

contains greater or equal value than its child nodes.

Example




Above tree is satisfying both Ordering property and Structural property

according to the Max Heap data structure.

Operations on Max Heap

The following operations are performed on a Max heap data structure...

1. Finding Maximum

2. Insertion

3. Deletion

Finding Maximum Value Oper ation in Max Heap




Finding the node which has maximum value in a max heap is very simple.

In a max heap, the root node has the maximum value than all other nodes.

So, directly we can display root node value as the maximum value in max

heap.

I nsertion Operation in Max Heap

Insertion Operation in max heap is performed as follows...

« Step 1 - Insert the newNode as last leaf from left to right.

« Step 2 - Compare newNode value with its Parent node.

. Step 3 - If newNode value is greater than its parent,

then swap both of them.

o Step 4 - Repeat step 2 and step 3 until newNode value is less than

its parent node (or) newNode reaches to root.

Example
Consider the above max heap. Insert a new node with value 85.

« Step 1 - Insert the newNode with value 85 as last leaf from left to

right. That means newNode is added as a right child of node with

value 75. After adding max heap is as follows...




. Step 2 - Compare newNode value (85) with its Parent node value
(75). That means 85 > 75




o Step 3 - Here newNode value (85) is greater than its parent value

(75), then swap both of them. After swapping, max heap is as

follows...



« Step 4 - Now, again compare newNode value (85) with its parent

node value (89).




Here, newNode value (85) is smaller than its parent node value (89).

So, we stop insertion process. Finally, max heap after insertion of a

new node with value 85 is as follows...




Deletion Operation in Max Heap

In a max heap, deleting the last node is very simple as it does not disturb

max heap properties.

Deleting root node from a max heap is little difficult as it disturbs the max

heap properties. We use the following steps to delete the root node from a

max heap...

o Step 1 - Swap the root node with last node in max heap

« Step 2 - Delete last node.

« Step 3 - Now, compare root value with its left child value.

« Step 4 - Ifroot value is smaller than its left child, then compare left

child with its right sibling. Else goto Step 6




« Step 5 - Ifleft child value is larger than its right sibling, then swap

root with left child otherwise swap root with its right child.

« Step 6 - Ifroot value is larger than its left child, then compare root

value with its right child value.

« Step 7 - Ifroot value is smaller than its right child, then swap

root with right child otherwise stop the process.

o Step 8 - Repeat the same until root node fixes at its exact position.

Example
Consider the above max heap. Delete root node (90) from the max heap.

« Step 1 - Swap the root node (90) with last node 75 in max heap.

After swapping max heap is as follows...




o Step 2 - Delete last node. Here the last node is 90. After deleting

node with value 90 from heap, max heap is as follows...




root

o Step 3 - Compare root node (75) with its left child (89).




Here, root value (75) is smaller than its left child value (89). So,
compare left child (89) with its right sibling (70).




o Step 4 - Here, left child value (89) is larger than its right sibling
(70), So, swap root (75) with left child (89).




root

« Step 5 - Now, again compare 75 with its left child (36).




Here, node with value 75 is larger than its left child. So, we compare
node 75 with its right child 85.




« Step 6 - Here, node with value 75 is smaller than its right child (85).

So, we swap both of them. After swapping max heap is as follows...




« Step 7 - Now, compare node with value 75 with its left child (15).




Here, node with value 75 is larger than its left child (15) and it does not

have right child. So we stop the process.

Finally, max heap after deleting root node (90) is as follows...
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