Data Structures are the programmatic way of storing data so that
data can be used efficiently. Almost every enterprise application
uses various types of data structures in one or the other way.

Why to Learn Data Structure and Algorithms?

As applications are getting complex and data rich, there are three
common problems that applications face now-a-days.

. Data Search — Consider an inventory of 1 million(10°) items of a

store. If the application is to search an item, it has to search an item
in 1 million(10°) items every time slowing down the search. As data
grows, search will become slower.

. Processor speed - Processor speed although being very high,

falls limited if the data grows to billion records.

. Multiple requests — As thousands of users can search data

simultaneously on a web server, even the fast server fails while
searching the data.

To solve the above-mentioned problems, data structures come to
rescue. Data can be organized in a data structure in such a way
that all items may not be required to be searched, and the required
data can be searched almost instantly.

Applications of Data Structure and Algorithms

Algorithm is a step-by-step procedure, which defines a set of
instructions to be executed in a certain order to get the desired
output. Algorithms are generally created independent of underlying
languages, i.e. an algorithm can be implemented in more than one
programming language.

From the data structure point of view, following are some important
categories of algorithms -

. Search - Algorithm to search an item in a data structure.



. Sort — Algorithm to sort items in a certain order.

Insert — Algorithm to insert item in a data structure.

. Update — Algorithm to update an existing item in a data structure.

. Delete — Algorithm to delete an existing item from a data structure.

The following computer problems can be solved using Data
Structures -

. Fibonacci number series

. Knapsack problem

. Tower of Hanoi

. All pair shortest path by Floyd-Warshall

. Shortest path by Dijkstra
. Project scheduling

Data Structure is a systematic way to organize data in order to use
it efficiently. Following terms are the foundation terms of a data
structure.

Interface — Each data structure has an interface. Interface
represents the set of operations that a data structure supports. An
interface only provides the list of supported operations, type of
parameters they can accept and return type of these operations.

Implementation —  Implementation  provides the internal
representation of a data structure. Implementation also provides the
definition of the algorithms used in the operations of the data
structure.

Characteristics of a Data Structure

. Correctness — Data structure implementation should implement its
interface correctly.

. Time Complexity -— Running time or the execution time of
operations of data structure must be as small as possible.



. Space Complexity — Memory usage of a data structure operation

should be as little as possible.

Need for Data Structure

As applications are getting complex and data rich, there are three
common problems that applications face now-a-days.

Data Search — Consider an inventory of 1 million(10° items of a
store. If the application is to search an item, it has to search an item
in 1 million(10° items every time slowing down the search. As data
grows, search will become slower.

Processor speed - Processor speed although being very high,
falls limited if the data grows to billion records.

Multiple requests — As thousands of users can search data
simultaneously on a web server, even the fast server fails while
searching the data.

To solve the above-mentioned problems, data structures come to
rescue. Data can be organized in a data structure in such a way
that all items may not be required to be searched, and the required
data can be searched almost instantly.

Execution Time Cases

There are three cases which are usually used to compare various
data structure's execution time in a relative manner.

. Worst Case - This is the scenario where a particular data structure

operation takes maximum time it can take. If an operation's worst
case time is f(n) then this operation will not take more than f(n)
time where f(n) represents function of n.

. Average Case - This is the scenario depicting the average
execution time of an operation of a data structure. If an operation
takes f(n) time in execution, then m operations will take mf(n) time.



. Best Case — This is the scenario depicting the least possible

execution time of an operation of a data structure. If an operation
takes f(n) time in execution, then the actual operation may take
time as the random number which would be maximum as f(n).

Basic Terminology

. Data — Data are values or set of values.

. Data Item — Data item refers to single unit of values.

. Group Items - Data items that are divided into sub items are called
as Group Items.

. Elementary Items — Data items that cannot be divided are called
as Elementary Items.

. Attribute and Entity — An entity is that which contains certain
attributes or properties, which may be assigned values.

. Entity Set — Entities of similar attributes form an entity set.

. Field - Field is a single elementary unit of information representing
an attribute of an entity.

. Record - Record is a collection of field values of a given entity.

. File — File is a collection of records of the entities in a given entity
set.
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Introduction

Data Structures



Definition

-

® Data structure is representation of the logical
relationship existing between individual
elements of data.

" In other words, a data structure 1s a way of
organizing all data items that considers not
only the elements stored but also their
relationship to each other.




Introduction

+

" Data structure affects the design of both
structural & functional aspects of a program.

Program=algorithm + Data Structure

" You know that a algorithm 1s a step by step
procedure to solve a particular function.



Introduction

&M " That means, algorithm 1s a set of instruction
written to carry out certain tasks & the data
structure 1s the way of organizing the data
with their logical relationship retained.

" To develop a program of an algorithm, we
should select an appropriate data structure
for that algorithm.

® Therefore algorithm and 1ts associated data
structures from a program.



Classification of Data Structure

+

® Data structure are normally divided into two
broad categories:

" Primitive Data Structure
= Non-Primitive Data Structure



Classification of Data Structure
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Data structure

Primitive DS

Non-Primitive DS

Integer

Float

Character

Pointer




Classification of Data Structure
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Non-Primitive DS

Linear List

Array

Non-Linear List

Queue

Link List

Stack

Graph

Trees




Primitive Data Structure

+

® There are basic structures and directly
operated upon by the machine instructions.

" In general, there are different representation
on different computers.

" Integer, Floating-point number, Character
constants, string constants, pointers etc, fall
in this category.



Non-Primitive Data Structure

+

® There are more sophisticated data
structures.

" These are derived from the primitive data
structures.

® The non-primitive data structures
emphasize on structuring of a group of
homogeneous (same type) or heterogeneous
(different type) data 1tems.



Non-Primitive Data Structure
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" Lists, Stack, Queue, Tree, Graph are
example of non-primitive data structures.

" The design of an efficient data structure
must take operations to be performed on the
data structure.



Non-Primitive Data Structure

+

" The most commonly used operation on data
structure are broadly categorized into
following types:

= Create

= Selection

= Updating

= Searching

= Sorting

" Merging

= Destroy or Delete



Different between them

+

" A primitive data structure 1s generally a
basic structure that 1s usually built into the
language, such as an integer, a float.

" A non-primitive data structure is built out of
primitive data structures linked together 1n
meaningful ways, such as a or a linked-list,
binary search tree, AVL Tree, graph etc.



Description of various
&W Data Structures : Arrays

" An array 1s defined as a set of finite number
of homogeneous elements or same data
items.

" [t means an array can contain one type of
data only, either all integer, all float-point
number or all character.



Arrays

+

" Simply, declaration of array 1s as follows:
int arr[10]

" Where int specifies the data type or type of
elements arrays stores.

® “arr” 1s the name of array & the number
specified 1nside the square brackets 1s the
number of elements an array can store, this 1s
also called sized or length of array.



Arrays

+

" Following are some of the concepts to be
remembered about arrays:

" The individual element of an array can be
accessed by specifying name of the array,
following by index or subscript inside
square brackets.

" The first element of the array has index
zero[0]. It means the first element and
last element will be specified as:arr[0] &
arr[9]

Respectively.



Arrays

-

" The elements of array will always be
stored 1n the consecutive (continues)
memory location.

" The number of elements that can be stored
in an array, that 1s the size of array or its
length 1s given by the following equation:

(Upperbound-lowerbound)+1



Arrays

°

" For the above array 1t would be
(9-0)+1=10,where 0 1s the lower bound of
array and 9 1s the upper bound of array.

= Array can always be read or written
through loop. If we read a one-
dimensional array 1t require one loop for
reading and other for writing the array.




Arrays

+

" For example: Reading an array
For(1=0;1<=9;1++)

scanf(“%d”,&arr[i]);

" For example: Writing an array
For(1=0;1<=9;1++)

printf(“%d”,arr[i]);



Arrays

°

= If we are reading or writing two-
dimensional array it would require two
loops. And similarly the array of a N
dimension would required N loops.

" Some common operation performed on
array are:
= Creation of an array
" Traversing an array



Arrays
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" Insertion of new element

= Deletion of required element
= Modification of an element
" Merging of arrays



Lists

+

" A lists (Linear linked list) can be defined as a
collection of variable number of data items.

" Lists are the most commonly used non-
primitive data structures.

" An clement of list must contain at least two
fields, one for storing data or information and
other for storing address of next element.

" As you know for storing address we have a
special data structure of list the address must
be pointer type.



Lists

-

® Technically each such element 1s referred to
as a node, therefore a list can be defined as
a collection of nodes as show bellow:

[Linear Liked List]

Head

"AAA * BBB 1 CCC

N

Information field Pointer field




Lists

+

® Types of linked lists:
= Single linked list
= Doubly linked list
= Single circular linked list
® Doubly circular linked list



Stack

+

= A stack 1s also an ordered collection of
elements like arrays, but 1t has a special
feature that deletion and insertion of

elements can be done only from one end
called the top of the stack (TOP)

" Due to this property it is also called as last
in first out type of data structure (LIFO).



Stack

+

" It could be through of just like a stack of plates
placed on table 1n a party, a guest always takes
off a fresh plate from the top and the new plates
are placed on to the stack at the top.

" |t 1s a non-primitive data structure.

® When an element 1s inserted into a stack or
removed from the stack, its base remains fixed
where the top of stack changes.



Stack

°

® Insertion of element into stack 1s called
PUSH and deletion of element from stack 1s

called POP.

" The bellow show figure how the operations
take place on a stack:

< o .
PUSH POP

[STACK]




Stack

+

® The stack can be implemented into two
ways:
= Using arrays (Static implementation)
= Using pointer (Dynamic implementation)



Queue

+

® Queue are first 1n first out type of data
structure (1.e. FIFO)

" In a queue new elements are added to the
queue from one end called REAR end and

the element are always removed from other
end called the FRONT end.

" The people standing 1n a railway reservation
row are an example of queue.



Queue

°

® Each new person comes and stands at the
end of the row and person getting their
reservation confirmed get out of the row
from the front end.

" The bellow show figure how the
operations take place on a stack:
10| 20 | 30 | 40 | 50

| !

front rear




Queue

+

® The queue can be implemented into two
ways:
= Using arrays (Static implementation)
= Using pointer (Dynamic implementation)



Trees

°

= A tree can be defined as finite set of data
items (nodes).

" Tree 1s non-linear type of data structure in
which data items are arranged or stored 1n a
sorted sequence.

® Tree represent the hierarchical relationship
between various elements.



Trees

+

" |n trees:

" There 1s a special data item at the top of
hierarchy called the Root of the tree.

" The remaining data items are partitioned 1nto
number of mutually exclusive subset, each of
which 1s itself, a tree which 1s called the sub
tree.

® The tree always grows 1n length towards
bottom 1n data structures, unlike natural trees
which grows upwards.



Trees
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® The tree structure organizes the data into
branches, which related the information.

A
B
@/‘\@ (F)

root

(&



Graph

-

® Graph 1s a mathematical non-linear data
structure capable of representing many kind
of physical structures.

® It has found application in Geography,
Chemistry and Engineering sciences.

® Definition: A graph G(V,E) 1s a set of
vertices V and a set of edges E.



Graph

°

" An edge connects a pair of vertices and
many have weight such as length, cost and

another measuring instrument for according
the graph.

" Vertices on the graph are shown as point or
circles and edges are drawn as arcs or line
segment.



Graph
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" Example of graph:

5 -

[a] Directed & Weighted Graph [b] Undirected Graph



Graph

4

" Types of Graphs:
" Directed graph
= Undirected graph
= Simple graph
" Weighted graph
" Connected graph
= Non-connected graph



Algorithm Complexity and
Time-Space trade-off



Algorithms

An algorithm is a procedure for solving a problem in finite
number of steps

Algorithm is a well defined computational procedure that
takes some value (s) as input, and produces some
value (s) as output.

Algorithm is finite number of computational statements
that transform input into the output

An Algorithm is said to be accurate and truthful only
when it provides the exact wanted output.



Algorithms

* An algorithm may be given in different
forms.
- A description using English/other languages
- Areal computer program, e.g. C++

- A pseudo-code, C-like program, program-
language-like program.

Program = algorithms + data structures



Analysis of Algorithms

Why need algorithm analysis?

- Just writing a syntax-error-free program is not enough. We need
to know whether the algorithm is correct or not, i.e. whether it
can give correct answers for the inputs.

- If the program is run on a large data set, the running time
becomes an issue. We want to know how the algorithm performs
when the input size is large. The program may be
computationally inefficient, or may need lots of memory. We
analyze the resources that the algorithm requires: memory, and
computation time. We can also compare algorithms without
implementations.

- We analysis algorithms, rather than problems. A problem can be
solved with several algorithms, some are more efficient than
others.



Analysis of Algorithms

* Analysis of Algorithm refers to calculating

or guessing resources needful for the
algorithm.

* Resources means computer memory,
processing time etc.

* |n all these factors, time is most important

because the program developed should
be fast enough.



Analysis of Algorithms

Time complexity
- The amount of time that an algorithm needs to run to completion

Space complexity
- The amount of memory an algorithm needs to run

We will occasionally look at space complexity, but we
are mostly interested in time complexity.

Thus the better algorithm is the one which runs faster
(has smaller time complexity)



Analysis of Algorithms

There are several factors affecting the running time
- computer
- compiler
- algorithm

- input to the algorithm

 The content of the input affects the running time typically, the
input size (number of items in the input) is the main
consideration

- E.g. sorting problem = the number of items to be sorted.



Running time of an Algorithm

Running time of an algorithm depends upon the input
size and nature of input.

Most algorithms transform input objects into output
objects

o

s[3]1[2]—| SOFtng L [1]2]3]s

, _ algorithm _
input object output object

The running time of an algorithm typically grows with the
iInput size
- idea: analyze running time as a function of input size



Running Time of an Algorithm

 Even on inputs of the same size, running
time can be very different

- Example: algorithm that finds the first prime
number in an array by scanning it left to right

ldea: analyze running time in the
- best case

- worst case

- average case



Finding Running Time of an Algorithm

Running time is measured by number of steps/primitive
operations performed

We use RAM (Random Access Model), in which each
operation (e.g. +, -, X, /,=) and each memory access take
one run-time unit. Loops and functions can take multiple
time units.

Count the number of basic operations of an algorithm

- Read, write, compare, assign, jump, arithmetic
operations (increment, decrement, add, subtract,
multiply, divide), open, close, logical operations
(not/complement, AND, OR), ...



Example

int sum(int n)

L .
int partialSum;
1 artialSum=0; 1
2 tor (int I=1;lc=n;i++)  2N+2(=1+(N+1) +N)
3 parialSum +=1"1"i; an
s retum partialSum; 1
]

Lines 1 and 4 count for one unit each.
Line 3: executed N times, each time four units.

Line 2: (1 for initialization, N+1 for all tests, N for all
increments) total 2N + 2.

total time units: 6N + 4. (= O(N), will be discussed later.)



Asymptotic Complexity

+ The 6N+4 time bound is said to "grow
asymptotically” like N

This gives us an approximation of the
complexity of the algorithm

Ignores lots of (machine dependent)
details, concentrate on the bigger picture



Comparing Functions: Asymptotic
Notation

* Big Oh Notation: Upper bound
* Omega Notation: Lower bound
 Theta Notation: Tighter bound



Growth Rate of the Algorithm Running Time

Running time cg(n)

(munnber of time units)

. . . . .

Input size
rl

r;ﬂ
f(n) = XNgln))

Exact running time f(N) is difficult to find for some cases.
It is easier to find the upper and lower bounds of f(N).

Now, we find the orders of growth of f(N) for large N.



Asymptotic Notation
Big-Oh
If f(N) and g(N) are two complexity functions, we say

f(N) = O(g(N))
(read "f(N) is order g(N)", or "f(N) is big-O of g(N)")

There are positive constants ¢ and n0O such that
f(N) < c g(N) when N = n0

The growth rate of f(N) is less than or equal to the
growth rate of g(N). In other words, f(N) grows no faster
than g(N) for large N.

g(N) is an upper bound on f(N).



Big-Oh Example

- Let f(N) =2N° Then

- f(N) = O(~v*) (loose bound)

- f(N) = O( N?) (loose bound)
) = (

- f(N) = O(wv?) (It is the best answer and the
bound is asymptotically tight.)

- O(n?): reads “order N-squared” or “Big-Oh
N-squared”.



Big-Oh Notation Rules

When considering the growth rate of a function using
Big-Oh notation,

- we ignore the lower order terms

- We ignore the coefficients of the highest-order term; and

- we don’t need to specify the base of logarithm

 Note that changing the base from one constant to another
changes the value of the logarithm by only a constant factor

If T1(N) = O(f(N)) and T2(N) = O(g(N)), then

- T1(N) + T2(N) = O(f(N) + g(N))
or max(O(f(N)), O(g(N))),

- T1(N) " T2(N) = O(f(N) * g(N))



Big-Oh Example (2)

// Input: int A[N], array of N integers
// Output: Sum of all numbers in array A

int Sum(int A[], int N) {

int ;<—®

for (int[izd;[is_ub hiib
Q— @ @
D

4

= s {(A[i]
Sell

return s;|

1,2,8: Once

3,4,5,6,7: Once per each iteration
of for loop, N iteration

Total: SN + 3

The complexity function of the

algorithm is : f(N) = 5N +3

&



Big-Oh Example (2)

Estimated running time for different values of N:

N=10 => 53 steps

N =100 => 503 steps

N = 1,000 => 5003 steps

N = 1,000,000 => 5,000,003 steps

As N grows, the number of steps grow in linear
proportion to N for this function “Sum”

What Dominates in Previous Example?

What about the +3 and 5 in S5N+37?
- As N gets large, the +3 becomes insignificant

- bSis inaccurate, as different operations require varying amounts
of time and also does not have any significant importance




More Big-Oh Example

N%/2-3N=0N?)

(We throw away leading constants and low-order terms.)

1+4N = O(N)
7N°+ 10N + 3 = O(Nz) = O(N’) (loose bound)
log,, N log, N/log,10 O(log, N) O(logN)

log N+ N = O(N)



To prove that mathematically:
Example:
Consider f(n) = 272°— 3n + 6. Then f(n) = O(?") = O(°)

Try some values of ¢ and find out the corresponding 720 which satisfies
the condition.

1.f(n) = O("")
(a) Supposg we choose ¢ = 2.
2" —3n+6<2”
—-3n+6<0
nz2 Y
So we can see that if we choose ¢ = 2 and 0= 2, the condition is satisfied.

(b) Suppose we choose Cn=23:
2 2-3n+6=3

+3n-620
n <-4.37(ignored) or n = 1.37 n,
So we can see that if we choose c,1=03 and = 1.37, the condition is satisfied.

* There are other values of cand  which satisfy the condition.



2. f(n) = O(n3)
Suppose we choose ¢ = 1:
2 —-8+6< n
#3 IBn+6<0
n=2

So we can see that if we choose ¢ = 1 and n0 = 2, the condition is
satisfied.

3

* There are other values of ¢ and nO which satisfy the condition.



Performance Classification

f(n) Classification
1 Constant: run time is fixed, and does not depend upon n. Most instructions are
executed once, or only a few times, regardless of the amount of information being
processed
logn Logarithmic: when n increases, so does run time, but much slower. Common in

programs which solve large problems by transforming them into smaller problems.

n Linear: run time varies directly with n. Typically, a small amount of processing is
done on each element.

nlogn When n doubles, run time slightly more than doubles. Common in programs which
break a problem down into smaller sub-problems, solves them independently, then
combines solutions

n2 Quadratic: when n doubles, runtime increases fourfold. Practical only for small
problems; typically the program processes all pairs of input (e.g. in a double nested
loop).

n3 Cubic: when n doubles, runtime increases eightfold

2n Exponential: when n doubles, run time squares. This is often the result of a natural,

“brute force” solution.




What happens 1f we double the input size N?

Nlog2N SN N log2N N2 2N

8 3 40 24 04 256
16 4 80 04 256 ©55360
32 5 160 160 1024 ~109
04 S 320 384 40906 ~1019
128 7 640 896 10384 ~1038
250 8 1280 2048 65536 ~1076




Standard Analysis Techniques

Constant time statements
Analyzing Loops

Analyzing Nested Loops

Analyzing Sequence of Statements
Analyzing Conditional Statements



Constant time statements

-+ Simplest case: O(1) time statements

+ Assignment statements of simple data types
int x =;
Arithmetic operations:
X=5*y+4-z
Array assignment:
Alll = 5;
Most conditional tests:
if (x<12) ...



Analyzing Loops[1]

Any loop has two parts:
- How many iterations are performed?
- How many steps per iteration?
int sum = 0,j;
for (j=0; j < N; j++)
sum = sum +j;

- Loop executes N times (0..N-1)
- 4 = 0O(1) steps per iteration
Total time is N * O(1) = O(N*1) = O(N)



Analyzing Loops|[2]

- What about this for loop?
int sum =0, j;
for (j=0; j <100; j++)
sum = sum +j;
+ Loop executes 100 times
- 4 =0(1) steps per iteration
- Total time is 100 * O(1) = O(100 * 1) =
O(100) = O(1)



Analyzing Nested Loops|1]

* Treat just like a single loop and evaluate each
level of nesting as needed:
int j,k;
for (j=0; j<N; j++)
for (k=N; k>0; k--)
sum += k+j;
- Start with outer loop:

- How many iterations? N

- How much time per iteration? Need to evaluate inner
loop

* Inner loop uses O(N) time
+ Total time is N * O(N) = O(N*N) = O(N2)



Analyzing Nested Loops|2]

- What if the number of iterations of one loop
depends on the counter of the other?

int J,k;
for (j=0; j < N; jt++)
for (k=0; k < j; k++)
sum += k+j;

* Analyze inner and outer loop together:

Number of iterations of the inner loop is:
0+1+2+ ...+ (N-1)=0O(N2)



Analyzing Sequence of Statements

For a sequence of statements, compute their
complexity functions individually and add them

up

for (j=0; j < N; j++)
for@R=20; k < j; k++)
sum = sum + j*K;
foP{=E0; | < N; |++)
o pUM = sum -I;

cout<<*Sum="<<sum;




Analyzing Conditional Statements

What about conditional statements such as

if (condition)
statement1;

else
statement2;

Running time = never more than the running time of the
test Condition plus the larger of the running times of
Statement1 and Statement2.



Arrays



What is Array

* An Array is a structured collection of
components, all of same type, that is given
a single name. Each component (array
element) is accessed by an index that

iIndicates the component’s position within
the collection.



Defining Array

- Like other variables in C++, an array must
be defined before it can be used to store
iInformation.

+ Like other definitions, an array definition
specifies a variable type and a name. But
it includes another feature i.e. size.

DataType ArrayName [Const Int Expression ];



Array Elements

* The items in an array are called array
elements.

* All elements in an array are of the same
type; only the values vary.

- Example
int array1[4]={10, 5, 678, -400 } ;



Accessing Array Elements

* To Access an individual array component, we
write the array name, followed by an expression
enclosed in square brackets. The expression
specifies which component to access.

© Syntax

ArrayName [ IndexExpression]

- Example

array1[2]
array1[i] wherei=3



Inltlallzmg array in Declarations

To initialize an array, you have to specify a list of initial
values for the array elements, separate them with
commas and enclose the list within braces.

int array1[5] = {23, 10, 16, 37, 12};

We don’t need to use the array size when we initialize all
the array elements, since the compiler can figure it out
by counting the initializing variables.

intarray1[ ] = { 23, 10, 16, 37};
What happens if you do use an explicit array size, but it

doesn’t agree with the number of components ?

- If there are too few components/ items , the missing element will
be set to zero.

- If there are two many, an error is signaled.



Lack of Aggregate Array Operations

C++ does not allow aggregate operations on arrays.
int x[50], y[50] ;

There is no aggregate assignment of y to x
X =vy; //not valid

To copy array vy into array x, you must do it yourself,
element by element.

for (i=0; i<30; i++)
X[i] = y[i]; //valid operation
Similarly, there is no aggregate comparison of arrays.
If (x ==y ) //Not valid



Lack of Aggregate Array Operations

Also, you cannot perform aggregate input / output
operations on arrays.

cin>>x; //not valid, where x is an array
cout<<x //not valid

You cannot perform aggregate arithmetic operations on
arrays

X =x +y // not valid, where x and y are arrays

Finally, it is not possible to return an entire array as the
value of a value-returning function

return x; //not valid, where x is an array.



Example of One Dimensional Array
void main()
{
double sales [6], average, total=0;
cout<< “Enter sales of 6 days’;
for( int j=0; j<6; j++)
cin >> sales| 1 |;
for (int j=0; j<6; j++)
total +=sales[ ] ;
average = total / 6;
cout<< “Average ="<< average;



Multidimensional Arrays

+ Atwo dimensional array is used to
represent items in a table with rows and

columns, provided each item in the table is
of same data type.

- Each component is accessed by a pair of
indexes that represent the component’s
position in each dimension.



Defining Multidimensional Array

+ Two Dimensional Array

- The array is defined with two size specifiers,
each enclosed in brackets

DataType ArrayName[ConstintExp][ConstIntEXxp]
- Example

double array2[3][4];

* Three Dimensional Array

float array3[x][y][z]




Accessing Multidimensional Array
Elements

* Array elements in two dimensional arrays
required two indexes

array2[1][2]
* Notice that each index has its own set of
brackets. Don’t write commas.

array2[1,2] // not valid syntax



Example Two Dimensional Array
void main()
{
float array2[3][3]= {{ 12.2, 11.0, 9.6 },
{ 23.9,-50.6, 2.3 },
{22, 33, 44 }};

for (int row=0; row<3; row++)
for (int col=0; col<3; col++)
cout<< array2[row][col];



Arrays, Pointers and Strings



Arrays

* An Array Is a collection of variables of the
same type that are referred to through a
common name.

- Declaration
type var_namejsize]

e.g int A[6]:
double d[15];




Array Initialization

After declaration, array contains some
garbage value.

Static initialization

int month_days[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

Run time Initialization

int i;

int A[6];

for(i=0;i<6; i++)
Ali]=6-1i;




Memory addresses

on oo

- Memory Is divided up into one .-
byte pieces individually .-
addressed. .-

- minimum data you can 0x0000123
request from the memory is 1 N
byte g

‘W 0x0000123
A
‘O’ 0x0000123
- Each byte has an address. B

for a 32 bit processor, |
addressable memory Is 232 4



Array - Accessing an element

. ..
MAB o wa wm wa s

0x1000 0x1004 0x1008 0x1012 O0Ox1016 0x1020
6 5 4 3 2 1

6 elements of 4 bytes each,
total size =»8:x 4 bytes = 24 bytes

A[3] =5;
Read an element

\AJvidAN FAA An AlAvraAa A E



Strings in C

No “Strings” keyword
A string Is an array of characters.

char string[] = “H@lR world”;
char *string = “hello world”;

A C String of Characters with Addresses

- x— L | [l =T L) o = o ()
S 8 a8 a8 a8 8 B 8 38 =8
[ o) [ [ - [ o) L - I o [ | — o
i e st Pt e S e o n b o
(g | (| [t | (g | [ | [ | [ | (gt | [t | (|
01 [1] [2] [3] [4] [3]1 [6] [7] [3] I[9]
H e | I o W o r |

(o))

1234:000A
1234:000B

—
—

1
- r ¥
—
[

O
—_—
e



Significance of NULL character
‘\01

char string[] = “hello world”;
printf(“%s”, string);

+ Compiler has to know where the string
ends

- \O’ denotes the end of string
{program: hello.c}

Some more characters (do $man ascii):
\n’ = new line, \t’ = horizontal tab, \V’ =

| ] | |
vrnviiaal +A L N\ o AArrIAarAs et s



Pointers in C

A char pointer points to a single byte.

- An Int pointer points to first of the four
oytes.
ANLp; & it p; L
- Apointer itself has an address where it is
stored in the memory. Pointers are usually
QU pytes. > @D

P = & C -
- *|s called the dereference operator

- *p gives the value pointed by p
8
A i




More about pointers

intx=1,y =2, z[10];
Int *ip;  /* A pointer to an int */

Ip = &x; [*Address of x */

y =*ip; /* Content of ip */

*In =0; [* Clear where ip points */

Ip = &z[0]; /* Address of first element
of z */

{program: pointer.c} .



Pointer Arithmetic

- A 32-bit system has 32 bit address space.
- To store any address, 32 bits are required.

- Pointer arithmetic : p+1 gives the next
memory location assuming cells are of the
same type as the base type of p.

10



Pointer arithmetic: Valid

operations
* pointer +/- integer = pointer
* pointer - pointer = Integer

* pointer <any operator> pointer - invalid
— pointer +/- pointer = invalid

11



Pointer Arithmetic: Example

Int *p, x = 20;

0 = &X;

orintf("p = %p\n", p);

orintf("p+1 = %p\n", (int*)p+1);
orintf("p+1 = %p\n", (char*)p+1);
orintf("p+1 = %p\n”, (float*)p+1);
orintf("p+1 = %p\n“, (double*)p+1);
Sample output:

p =0022FF70 12




Pointers and arrays

Pointers and arrays are tightly coupled.
char a[] = “Hello World”;
char *p = &a[0];

chara[12], “p = &a[0];

T el tpH2) (pEd) C(pd) Clpra) TR0y T+ T(pes) T{edd) C(p1l) Ce+11)

a[0] a[1] al2] a[3] a[4] a[5] a[B] a[7] a[B] a[9] a[10] a[i1]
H = I I 0 W 0 r I d \0'

13



Pointers and function

arguments

- Functions only receive copies of the
variables passed to them.

{program: swap_attempt_1.c}

- A function needs to know the address of a
variable If it Is to affect the original variable

nnr:‘.)m Qllllﬂ
tpro oriftf“hello world\n” _attempt_2.cj

- Large items I| e strings or arrays cannot
be passed to functions either.

4
- \What ic nacecad ic the addracc n% “halln



2-Dimensional Arrays (Array of

arrays)
int d[3][2];

Access the point 1, 2 of the array:
d[1][2]

Initialize (without loops):
int d[3][2] = {1, 2}, {4, 5}, {7, 8}};

15



More about 2-Dimensional
arrays

A Multidimensional array Is stored in a row major
format.

A two dimensional case:
= next memory element to d[0][3] is d[1][0]
d[o][0] dioji]  ——del2}—dfolEs—
<—dpjor——dapjpa}——diRl— diiEE
<—a2)[0}—d2Jia}—  d[2][2] d[2][3]

What about memory addresses sequence of a three
dimensional array?

= next memory element to t[0][0][O] is t[O][O][1]

16



Arrays and Pointers in C




Objectives

Be able to use arrays, pointers, and strings in
C programs

Be able to explain the representation of these
data types at the machine level, including
their similarities and differences

Arrays and Pointers 2



Arrays in C

All elements of same type — homogenous

/ Unlike Java, array size in declaration

int b;

array|[0]
array|[9]

4=/3.

arrawf-1

arrafa)
]

&
int array[10]

&

°
14

14

4;
5;
6.

14

L

N

N

No bounds checking!

Compare: C: int array[10];

Java: int[] array = new int[10];

— First element (index 0)
__— Last element (index size - 1)

Allowed — usually causes no obvious error
array[10] may overwrite b

Arrays and Pointers 3



Array Representation

Homogeneous Each element same size - s bytes
+ An array of m data values is a sequence of m s bytes
+ Indexing: Oth value at byte s 0, 1st value at byte s 1, ...

m and s are not part of representation
+ Unlike in some other languages
+ s known by compiler — usually irrelevant to programmer

+ m often known by compiler - if not, must be saved by
programmer

0x1008

0x1004

int a[3];

0x1000

Arrays and Pointers 4



Array Representation

char cl;
int a[3];
char c2;
int i;

0x1014

0x1010

0x100C Could be optimized by

making these adjacent,
and reducing padding
(by default, not)

0x1008
0x1004

0x1000 Array aligned by

size of elements

Arrays and Pointers 5



Array Sizes

int array[10];

What is

array[3])? 4
/

returns the size of

an object in bytes
: Y sizeof (array)? 40

Arrays and Pointers



Multi-Dimensional Arrays

0x1014
0x1010
int matrix[2][3]:; 0x100C
matrix[1][0] = 17; 0x1008
0x1004
0x1000
Recall: no bounds checking
What happens when you write: “Row Major”

Organization

matrix[0] [3] = 42;

Arrays and Pointers 7



Variable-Length Arrays

int
function(int n)

{

int array[n];

New C99 feature: Variable-length arrays
defined within functions

Global arrays must still have fixed (constant) length

Arrays and Pointers 8



Memory Addresses

Storage cells are typically viewed as being
byte-sized
+ Usually the smallest addressable unit of memory
Few machines can directly address bits individually
* Such addresses are sometimes called byte-
addresses
Memory is often accessed as words

* Usually a word is the largest unit of memory access
by a single machine instruction

CLEAR’s word size is 8 bytes (= sizeof (long))
* A word-address is simply the byte-address of the
word’s first byte

Arrays and Pointers 9



Pointers

Special case of bounded-size natural numbers
+ Maximum memory limited by processor word-size
+ 232 bytes = 4GB, 264 bytes = 16 exabytes

A pointer is just another kind of value
* A basic typein C

int *ptr;

The variable “ptr” stores a pointer to an “int”".

Arrays and Pointers 10



Pointer Operations in C

Creation
& variable Returns variable’s memory address

Dereference
* pointer Returns contents stored at address

Indirect assignment
~ pointer = val Stores value at address

Of course, still have...

Assignment
pointer = ptr Stores pointer in another variable

Arrays and Pointers 11



Using Pointers

int 1i1;
int 1i2;
int *ptrl; 0x1014
int *ptr2;

0x1010
il = 1; 0x100C
i2 = 2;

0x1008
Ptr]_ = &il; 0x1004
ptr2 = ptrl; 0x1000
*ptrl = 3;
i2 = *ptr2;

Arrays and Pointers 12



Using Pointers (cont.)

int intl 1036; /* some data to point to */
int int2 = 8;

int *int ptrl = &intl; /* get addresses of data */
int *int ptr2 = &int2;

*int_ptrl = int_ptr2;

int2; \

*int_ptrl

What happens?

Type check warning: int ptr2 is not an int

intl becomes 8

Arrays and Pointers 13



Using Pointers (cont.)

int intl 1036; /* some data to point to */
int int2 = 8;

int *int ptrl = &intl; /* get addresses of data */
int *int ptr2 = &int2;

int_ptrl = *int_ptr2;

int_ptr2 ,\

int_ptrl

What happens?

Type check warning: *int ptr2 is not an int *

Changes int ptrl — doesn’t change intl

Arrays and Pointers 14



Pointer Arithmetic

pointer + number pointer — number

E.g., pointer + 1 adds 1 something to a pointer

char *p; int *p;
char a, int a,
char b; int b;
P = &a; p = &a;
p += 1; <7— In each, p now pointstob —tp += 1;

(Assuming compiler doesn’t
reorder variables in memory)

Adds 1*sizeof(char) to Adds 1*sizeof(int) to
the memory address the memory address

Pointer arithmetic should be used cautiously

Arrays and Pointers 15



A Special Pointer in C

Special constant pointer NULL
+ Points to no data
+ Dereferencing illegal — causes segmentation fault

* To define, include <stdlib.h> or <stdio.h>

Arrays and Pointers 16



Generic Pointers

void *: a “"pointer to anything”

e

void *p;

int i;

char c;

p = &i;

P = &c;

putchar (m
~—__—

type cast: tells the compiler to
“change” an object’s type (for type
checking purposes — does not modify
the object in any way)

Dangerous! Sometimes necessary...

Lose all information about what type of thing
Is pointed to

*

L 4

Arrays and Pointers

Reduces effectiveness of compiler’s type-checking
Can’t use pointer arithmetic

17



Pass-by-Reference

void
set x and y(int *x, int *y)

*x = 1001;

*y = 1002; a
}

b

void
f (void)
{ X

int a = 1;

int b = 2; y

Arrays and Pointers 18



Arrays and Pointers

Dirty “secret”: Passing arrays:

Array name a pointer to the Really int *array Must explicitly

initial (Oth) array element \ pass the size
int J//

a[i] *(a + i) foo (int arrayl[],

unsigned int size)

{

An array is passed to a function - array[size - 1] ..
as a pointer }
* The array size is lost! _
int
main (void)
Usually bad style to interchange | ¢
arrays and pointers int a[10], b[5];

+ Avoid pointer arithmetic! .. foo(a, 10).. foo(b, 35) ..
}

Arrays and Pointers 19



Arrays and Pointers

int
foo(int arrayl],
unsigned int size)

__What does this print? 8

printf (“$d\n”, sizeof (array)); * | _
... because array is really

a pointer
int
main (void)
{
int a[l1l0], b[5];

- foo(a, 10).. foo(b, 5) .. ___What does this print? 40
printf (“%d\n”, sizeof(a)); «— |

Arrays and Pointers 20



Arrays and Pointers

int

int

i;

array|[10];

for (1 = 0; 1 < 10; i++)

{

array[i] = ..;

These two blocks of code are functionally equivalent

int *p;
int array[10];

for o < &array[10]
{

.
cee J

}

Arrays and Pointers

21




Strings

In C, strings are just an array of characters
* Terminated with '\0’ character
+ Arrays for bounded-length strings
+ Pointer for constant strings (or unknown length)

char strl[1l5]
char *str2

C, .- Hle[1ffo], | |wlo|x|1]a]! hnterminator|

C terminator: " \0’

Arrays and Pointers 22

“Hello, world'\n”;
“Hello, world'\n”;




String length

Must calculate length:

can pass an

int — array or pointer
strlen (
{

array access int len
terminator

to pointer! \\
while 1=
len++? \\\
What is the size

return (len) of the array???

I
o

Check for

}

Provided by standard C library: #include <string.h>

Arrays and Pointers 23



Pointer to Pointer (char **argv)

Passing arguments to main:

size of the argv array/vector

int * 
{ “\ an array/vector of

char *

Recall when passing an

array, a pointer to the

. first element is passed
Suppose you run the program this way

UNIX% ./program hello 1 2 3
argec == 5 (five strings on the

command line)
Arrays and Pointers 24



char **argv

> \\3’,
0x1020 . wow These are strings!!
0x1018 / Not integers!
0x1010 > w17
0x1008  “helloh
0x1000
> “./program”

Arrays and Pointers 25



Next Time

Structures and Unions

Arrays and Pointers
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Stacks are dynamic data structures that follow the Last In First Out
(LIFO) principle. The last item to be inserted into a stack is the first one to
be deleted from it.

For example, you have a stack of trays on a table. The tray at the top of
the stack is the first item to be moved if you require a tray from that stack.

Inserting and deleting elements

Stacks have restrictions on the insertion and deletion of elements.
Elements can be inserted or deleted only from one end of the stack i.e.
from the top. The element at the top is called the top element. The
operations of inserting and deleting elements are
called push() and pop() respectively.

When the top element of a stack is deleted, if the stack remains non-
empty, then the element just below the previous top element becomes the
new top element of the stack.

For example, in the stack of trays, if you take the tray on the top and do
not replace it, then the second tray automatically becomes the top
element (tray) of that stack.

Features of stacks

. Dynamic data structures

. Do not have a fixed size

. Do not consume a fixed amount of memory

. Size of stack changes with each push() and pop() operation.
Each push() and pop() operation increases and decreases the size of
the stack by 1, respectively.



A stack can be visualized as follows:

@ top element
top element
{}topmewmnt 4

1 Insertion of 4. 1 1
{Push) Deletion of top

2 element.
2 ::

(Pop) 2

—>

7 7 7
6 b 6
STACK STACK STACK
Operations

push( x): Insert element x at the top of a stack

void push (int stack[ ] , int x , int n) {

if ( top == n-1 ) { //If the top position is the last of
position in a stack, this means that the stack is full

cout << “Stack is full.Overflow condition!”

}

14

else{
top = top +1 ; //Incrementing top position
stack[ top ] = x ; //Inserting element on incremented

position
}
}



pop(): Removes an element from the top of a stack

void pop (int stack[ ] ,int n )
{

if( isEmpty ( ) )
{

cout << “Stack is empty. Underflow condition! ” << endl ;
}
else
{

top = top - 1 ;

last element from stack

}

//Decrementing top’s position will detach

}

topElement (): Access the top element of a stack

int topElement ( )
{

return stack[ top ];

}

ISEmpty () : Check whether a stack is empty

bool isEmpty ( )
{
if ( top == -1 ) //Stack is empty
return true ;
else
return false;

size (): Determines the current size of a stack

int size ( )
{

return top + 1;

}

Implementation



#include <iostream>
using namespace std;

int top = -1; //Globally defining the value of top as the stack is empty
void push (int stack[ ] , int x , int n)
{
if ( top == n-1 ) //If the top position is the last of

position of the stack, this means that the stack is full.
{

cout << "Stack is full.Overflow condition!"

}

else

{
top = top +1 ; //Incrementing the top position

stack[ top 1 = x ; //Inserting an element on
incremented position
}

}
bool isEmpty ( )

{
if ( top == -1 ) //Stack is empty
return true ;
else
return false;

}
void pop ( )
{

if( isEmpty ( ) )
{

cout << "Stack is empty. Underflow condition! " << endl ;

}

else

{
top = top - 1 ; //Decrementing top’s position will detach

last element from stack

}

int size ()
return top + 1;

int topElement (int stack][])
return stack[ top ]:;

//Let's implement these functions on the stack given above

int main( )

{
int stack[ 3 ];



// pushing element 5 in the stack .
push(stack , 5, 3 )

cout << "Current size of stack 1s " << size ( ) << endl ;

push (stack , 10 , 3);
push (stack , 24 , 3) ;

cout << "Current size of stack is " << size( ) << endl ;

//As the stack is full, further pushing will show an overflow
condition.
push (stack , 12 , 3) ;

//Accessing the top element
cout << "The current top element in stack is " <<
topElement (stack) << endl;

//Removing all the elements from the stack
for(int 1 = 0 ; i < 3;i++ )
pop ( )
cout << "Current size of stack is " << size( ) << endl ;

//As the stack is empty , further popping will show an underflow
condition.
pop ( )7

Output

. Current size of stack: 1

. Current size of stack: 3

. Current top element in stack: 24 (Stack is full. Overflow condition!)
. Current size of stack: 0 (Stack is empty. Underflow condition!)

Refer to the following image for more information about the operations
performed in the code.



1) Initially stack is 5y Astop =2, current size of stackistop+l,i.e 3.
empty. Mow stackis full,as 3 is maximum size of
L top =-L stack

0 6) pushistack, 12, 3)

Ls stack is full it will show

2)  push(stack, 5, 3} OVERFLOW COMDTION!

pop(stack, 3)

2
rop(stack, 3
7) Deleting all I:::}b :m::}stacl-t 3;
elements from stach. '
1
2 EMPTY STACK !!
ol 5 L5 top element
top =0 top =-1
1

3} push(stack, 10, 3} .

1| 10 | < top element 8) Pop(stack, 3]

top =1
7 As stack is empty, further
0|5 deleting will cause
1 UNDERFLOW CONDITION!

4} push(stack, 24, 3)
0

2| 24 <5 top element
top =2

ol 5




Application
Consider the balanced parentheses problem.

You have a bracket sequence made up of opening '(' and closing )’
parentheses. You must check if this bracket sequence is balanced.

A bracket sequence is considered balanced if for every prefix of the
sequence, the number of opening brackets is greater than or equal to the
number of closing brackets, and the total number of opening brackets is
equal to the number of closing brackets.

You can check this using stack. Let's see how.

You can maintain a stack where you store a parenthesis. Whenever, you
come across an opening parenthesis, pushit in the stack. However,
whenever you come across a closing parenthesis, pop a parenthesis from
the stack.

#include <iostream>
using namespace std;

int top;
void check (char str[ ], int n, char stack [ 1)
{
for(int i = 0 ; 1 < n ; 1i++ )
{
if (str [ 1 ] == ‘(")

{
top = top + 1;
stack[ top ] = Y ( ">
}
if(str[ 1 ] == V)’ )
{
if (top == -1 )
{
top = top -1 ;
break ;

if (top == -1)
cout << “String is balanced!” << endl;
else



cout << “String is unbalanced!” << endl ;

}

int main ( )

{

//balanced parenthesis string.
char str[ ] = { (', Ya’" , Y+, Y (', Yo', -1,

Y "y

// unbalanced string

char strl [ ] = { (" , (" , Y& , Y+ ", YDb" , V)" }
char stack [ 15 ] ;

top = -1;

check (str , 9 , stack ); //Passing balanced string
top = -1 ;

check (strl , 5 , stack) ; //Passing unbalanced string

return O;



Data Structure & Algorithms

Problem Solving with
Stack



Problem Solving with Stacks

Many mathematical statements contain nested parenthesis
like :-

(A+(B*C) )+ (C - (D + F))

We have to ensure that the parenthesis are nested
correctly, i.e. :-

There is an equal number of left and right parenthesis

Every right parenthesis is preceded by a left
parenthesis

Expressions such as ((A + B) violate condition 1

M=

And expressions like ) A+ B ( - C violate condition 2



Problem Solving (Cont....)

To solve this problem, think of each left
parenthesis as opening a scope, right parenthesis
as closing a scope

Nesting depth at a particular point in an
expression is the number of scopes that have been
opened but not yet closed

Let “parenthesis count” be a variable containing
number of left parenthesis minus number of right
parenthesis, in scanning the expression from left
to right



Problem Solving (Cont....)

For an expression to be of a correct form following
conditions apply

- Parenthesis count at the end of an expression must be 0

- Parenthesis count should always be non-negative while
scanning an expression

Example :

- Expr: 7-(A+B)+ ((C - D) +F)
- ParenthesisCount: 00111 10012222111 0
- Expr: 7-((A+B)+ ((C -D) +F)

-  ParenthesisCount: 001222211233 332221



Problem Solving (Cont....)

Evaluating the correctness of simple expressions like this
one can easily be done with the help of a few variables like
“Parenthesis count”

Things start getting difficult to handle by your program
when the requirements get complicated e.g.

Let us change the problem by introducing three different
types of scope de-limiters i.e. (parenthesis), {braces} and
[brackets].

In such a situation we must keep track of not only the
number of scope delimiters but also their types

When a scope ender is encountered while scanning an
expression, we must know the scope delimiter type with
which the scope was opened

We can use a stack ADT to solve this problem



Problem Solving with Stack

A stack ADT can be used to keep track of the scope
delimiters encountered while scanning the expression

Whenever a scope “opener” is encountered, it can be
“pushed” onto a stac

Whenever a scope “ender” is encountered, the stack is
examined:

- If the stack is “empty”, there is no matching scope “opener” and
the expression is invalid.

- If the stack is not empty, we pop the stack and check if the
“popped” item corresponds to the scope ender

- If match occurs, we continue scanning the expression

When end of the expression string is reached, the stack
must be empty, otherwise one or more opened scopes
have not been closed and the expression is invalid



Why the need for a Stack

Last scope to be opened must be the first one to
be closed.

This scenario is simulated by a stack in which the
last element arriving must be the first one to leave

Each item on the stack represents a scope that has
been opened but has yet not been closed

Pushing an item on to the stack corresponds to
opening a scope

Popping an item from the stack corresponds to
closing a scope, leaving one less scope open



Stack in Action ....

“— top

[ A+ {B-C + (D +E)} ]



Stack in Action ....

“ top

Push(T"); [

[ A+ {B-C + (D +E)} ]



Stack in Action ....

“ top

Push( {");

[ A+ {B-C + (D + E)} ]



Stack in Action ....

“ top

Push( ‘(" );

[ A+ {B-C + ( D+ E)} ]



Stack in Action ....

T top

Pop( );

[ A+ {B-C+ (D+E ) 1} 1]



Stack in Action ....

T top

[ A+ {B-C + (D +E)} ]



Stack in Action ....

T top

Pop( );

[A+ {B-C+ (D+E 1} ]



Stack in Action ....

T top

[ A+ {B-C + (D +E)} ]



Stack in Action ....

T top

Pop( ); [

[ A+ {B-C + (D +E)} ]



Stack in Action ....

“— top

[ A+ {B-C + (D +E)} ]

Result = A valid expression



Infix, Prefix and Postfix
Notations



Infix, Postfix and Prefix Notations

The usual way of expressing the sum of two numbers A and B

1S :
A+B
The operator “+ is placed between the two operands A and B
This is called the “Infix Notation”
Consider a bit more complex example:
(13-5)/(3+1)

When the parentheses are removed the situation becomes
ambiguous

13-5 /3 +1
isit (13-5)/(3 +1)
or  13-(5/ 3)+1

To cater for such ambiguity, you must have operator
precedence rules to follow (as in C++)



Infix, Postfix and Prefix Notations

' In the absence of parentheses
13-5 /3 +1
* Will be evaluatedas 13-(5 / 3)+1

* Operator precedence is by-passed with the help of
parentheses asin (13-5) /(3 +1)

- The infix notation is therefore cumbersome due to

- Operator Precedence rules and
- Evaluation of Parentheses



Postfix Notation

It is a notation for writing arithmetic expressions in
which operands appear before the operator

E.g. A+ B is written as A B + in postfix notation
* There are no precedence rules to be learnt in it.
Parentheses are never needed

Due to its simplicity, some calculators use postfix
notation

- This is also called the “Reverse Polish Notation or

RPN’



Postfix Notation — Some examples

Infix EXpressions Corresponding
Postfix

5S+3+4+1 53+4+1+
(5 + 3) * 10 53+ 10 *
(5+ 3) * (10 - 4) 53+104-*%
5%3/(7-8) 53*%78-/

(b*b-4*a*c)/(2*a) bb*4a*c*-2a7*/




Conversion from Infix to Postfix
Notation

 We have to accommodate the presence of
operator precedence rules and Parentheses
while converting from infix to postfix

- Data objects required for the conversion are

- An operator / parentheses stack

- A Postfix expression string to store the resultant
- An infix expression string read one item at a time



Conversion from Infix to Postfix

The Algorithm

What are possible items in an input Infix expression
Read an item from input infix expression

If item is an operand append it to postfix string

If item is “(” push it on the stack

If the item is an operator

*If the operator has higher precedence than the one already on top of the
stack then push it onto the operator stack

* If the operator has lower precedence than the one already on top of the
stack then

- pop the operator on top of the operator stack and append it to postfix
string, and

- push lower precedence operator onto the stack

If item is “)” pop all operators from top of the stack one-by-one, until
a “(” is encountered on stack and removed

If end of infix string pop the stack one-by-one and append to postfix
string



Converting Infix Expressions to
Equivalent Postfix Expressions

ch  stack (bottom to top) postfixExp

a a
~ - a
( -( B
b - ab
- -(+ ab
C -(+ abc
* —(+ abc
d —(+* abcd
) -(+ abcd» Move operators
-{ abcd»+ from stack to
- abcd» + postfixExp until " ("
/ -/ abcd» +
e -/ abcd» +e Copy operators from
abcd» +e/- stack to post £iXExp

A trace of the algorithm that converts the infix expression a - (b + ¢ * d)/e to postfix form



Try it yourself

+ Show a trace of algorithm that converts the
INfix expression

>(X+Y)*(P-Q/L)

>L-M/(N*OAP)



Evaluation of Postfix Expression

- After an infix expression is converted to
postfix, its evaluation is a simple affair

- Stack comes in handy, AGAIN

+ The Algorithm

- Read the postfix expression one item at-a-time
- If item is an operand push it on to the stack

- If item is an operator pop the top two operands
from stack and apply the operator

- Push the result back on top of the stack, which
will become an operand for next operation

- Final result will be the only item left on top of the
stack




Stack in Action ....

Postfix Expression

57+6 2 - =

“— top



Postfix Expression

57+6 2 - =

Stack in Action ....

“ top




Postfix Expression

57 +6 2 - =

Stack in Action ....

T top




Stack in Action ....

ﬁ
Postfix Expression . “— top
57 +6 2 - =« 2 “— top

Result = Pop( ) “+” Pop() Push (Result)



Stack in Action ....

Postfix Expression

“ top

12

57 +6 2 - =



Stack in Action ....

Postfix Expression 6 top

12

57 +6 2 - =



Stack in Action ....

T top

Postfix Expression

12

57 +6 2 - =



Postfix Expression

57 +6 2 -

*

Stack in Action ....

12

Result = Pop( ) “-" Pop()

T top

T top

12

Push (Result)



Stack in Action ....

Postfix Expression 4 top

12

57 +6 2 - *



Postfix Expression

57 +6 2 -

*

12

Result = Pop() “*” Pop()

“— top

48

“— top

Push (Result)



Postfix Expression

57 +6 2 -

*

—

48

“— top

Result = Pop( )
Result = 48

“— top



Evaluation of Postfix Expression

Evaluation of infix Expression is difficult because :

~ Rules governing the precedence of operators are to be
catered for

- Many possibilities for incoming characters
- To cater for parentheses
- To cater for error conditions / checks

Evaluation of postfix expression is very simple to implement
because operators appear in precisely the order in which they
are to be executed



Motivation for the conversion

Motivation for this conversion is the need to have the
operators in the precise order for execution

While using paper and pencil to do the conversion we can
“foresee” the expression string and the depth of all the scopes
(it the expressions are not very long and complicated)

When a program is required to evaluate an expression, it
must be accurate

At any time during scanning of an expression we cannot be
sure that we have reached the inner most scope

Encountering an operator or parentheses may require
frequent “backtracking”

Rather than backtracking, we use the stack to “remember”
the operators encountered previously



Assignment # 1

Write a program that gets an Infix arithmetic
expression and converts it into postfix notation

The program should then evaluate the posttix
expression and output the result

Your program should define the input and output
format, enforce the format and handle Exceptions
(exceptional conditions).

Use appropriate comments at every stage ot
programming
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Infix to Postfix Conversion

We use a stack
When an operand is read, output it

When an operator is read

— Pop until the top of the stack has an element of lower
precedence

— Then push it

When ) is found, pop until we find the matching (
( has the lowest precedence when in the stack
but has the highest precedence when in the input

When we reach the end of input, pop until the stack is
empty



Infix to Postfix Conversion
Example 1

* 3+4*5/6



Infix to Postfix Conversion
Example 1
* 3+4*5/6
e Stack:
* Qutput:



Infix to Postfix Conversion
Example 1
* 3+4*5/6
e Stack:
* Output: 3



Infix to Postfix Conversion
Example 1
e 3+4*5/6
e Stack: +
* Output: 3



Infix to Postfix Conversion
Example 1
* 3+4*5/6
e Stack: +
* Output: 34



Infix to Postfix Conversion
Example 1
* 3+4*5/6
e Stack: + *
* Output: 34



Infix to Postfix Conversion
Example 1
e 3+4*5/6
e Stack: + *
* Output: 345



Infix to Postfix Conversion
Example 1
e 3+4*5/6
e Stack: +
e Qutput:345*



Infix to Postfix Conversion
Example 1
* 3+4*5/6
e Stack: +/
e Qutput:345*



Infix to Postfix Conversion
Example 1
e 3+4*5/6
e Stack: +/
e Qutput:345*6



Infix to Postfix Conversion
Example 1
e 3+4*5/6
e Stack: +
 OQutput:345*6/



Infix to Postfix Conversion
Example 1
3+4*5/6
Stack:
Output:345*6/+

Donel!



Infix to Postfix Conversion
Example 2

. (300+23)*(43-21)/(84+7)



Infix to Postfix Conversion
Example 2

e (300+23)*(43-21)/(84+7)
e Stack:
* Qutput:



Infix to Postfix Conversion
Example 2

e (300+23)*(43-21)/(84+7)
e Stack: (
* Qutput:



Infix to Postfix Conversion
Example 2
* (300+23)*(43-21)/(84+7)
e Stack: (
* Output: 300



Infix to Postfix Conversion
Example 2
e (300+23)*(43-21)/(84+7)
e Stack: ( +
* Output: 300



Infix to Postfix Conversion
Example 2

* (300+23)*(43-21)/(84+7)
e Stack: ( +
e Output: 300 23



Infix to Postfix Conversion
Example 2

* (300+23)*(43-21)/(84+7)
e Stack: (
* Output: 300 23 +



Infix to Postfix Conversion
Example 2

e (300+23)*(43-21)/(84+7)
e Stack:
* Output: 300 23 +



Infix to Postfix Conversion
Example 2

e (300+23)*(43-21)/(84+7)
e Stack: *
* Output: 300 23 +



Infix to Postfix Conversion
Example 2

e (300+23)*(43-21)/(84+7)
e Stack: * (
* Output: 300 23 +



Infix to Postfix Conversion
Example 2

e (300+23)*(43-21)/(84+7)
e Stack: * (
* Output: 30023 +43



Infix to Postfix Conversion
Example 2

e (300+23)*(43-21)/(84+7)
e Stack: * ( -
* Output: 30023 +43



Infix to Postfix Conversion
Example 2

e (300+23)*(43-21)/(84+7)
e Stack: * ( -
* Output: 30023 +43 21



Infix to Postfix Conversion
Example 2

e (300+23)*(43-21)/(84+7)
e Stack: * (
* Output: 30023 +43 21 -



Infix to Postfix Conversion
Example 2

e (300+23)*(43-21)/(84+7)
e Stack: *
* Output: 30023 +43 21 -



Infix to Postfix Conversion
Example 2

e (300+23)*(43-21)/(84+7)
e Stack:
e Qutput: 30023 +4321-*



Infix to Postfix Conversion
Example 2

e (300+23)*(43-21)/(84+7)
e Stack: /
e Qutput: 30023 +4321-*



Infix to Postfix Conversion
Example 2

e (300+23)*(43-21)/(84+7)
» Stack: / (
e Qutput: 30023 +4321-*



Infix to Postfix Conversion
Example 2
* (300+23)*(43-21)/(84+7)
» Stack: / (
e Qutput:30023+4321-*84



Infix to Postfix Conversion
Example 2
* (300+23)*(43-21)/(84+7)
e Stack:/(+
e Qutput:30023+4321-*84



Infix to Postfix Conversion
Example 2

. (300+23)*(43-21)/(84+7)
e Stack:/(+
e Output: 30023 +4321-*847



Infix to Postfix Conversion
Example 2

. (300+23)*(43-21)/(84+7)
» Stack: / (
. Output: 30023 +4321-*847 +



Infix to Postfix Conversion
Example 2

e (300+23)*(43-21)/(84+7)
e Stack: /
. Output: 30023 +4321-*847 +



Infix to Postfix Conversion
Example 2

(300+23)*(43-21)/(84+7)
Stack:
Output: 30023 +4321-*847+/

Donel!



Infix to Postfix Conversion
Example 3

* (4+8)*(6-5)/((3-2)*(2+2))



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack:
* Output:



Infix to Postfix Conversion
Example 3

* (4+8)*(6-5)/((3-2)*(2+2))
e Stack: (
* Output:



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack: (
* Output: 4



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack: ( +
* Qutput: 4



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack: ( +
* Qutput: 48



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack: (
* Qutput: 48 +



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack:
* Qutput: 48 +



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack: *
* Qutput: 48 +



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack: * (
* Qutput: 48 +



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack: * (
* Output:48+6



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack: * ( -
* Output:48+6



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack: * ( -
* Output:48+65



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack: * (
* Output:48+65-



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack: *
* Output:48+65-



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack:
e OQutput:48+65-*



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack: /
e OQutput:48+65-*



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
» Stack: / (
* Output:48+65-*



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
o Stack: / ( (
e OQutput:48+65-*



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
o Stack: / ( (
* OQutput:48+65-*3



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
o Stack: / ( (-
* OQutput:48+65-*3



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
o Stack: / ( (-
e OQutput:48+65-*32



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
o Stack: / ( (
e Output:48+65-*32-



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
» Stack: / (
e Output:48+65-*32-



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
o Stack:/(*
e Output:48+65-*32-



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
o Stack: / (* (
e Output:48+65-*32-



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
o Stack:/ (*(
e Output:48+65-*%32-2



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack:/(* (+
e Output:48+65-*%32-2



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack:/(*(+
 Qutput:48+65-*32-22



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
o Stack:/ (*(
e Qutput:48+65-*32-22+



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
» Stack:/ (*
e Qutput:48+65-*32-22+



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
» Stack: / (
e OQutput:48+65-*32-22+*



Infix to Postfix Conversion
Example 3
* (4+8)*(6-5)/((3-2)*(2+2))
e Stack: /
e Qutput:48+65-*32-22+*



Infix to Postfix Conversion
Example 3
(4+8)*(6-5)/((3-2)*(2+2))
Stack:
Output:48+65-*32-22+%*/

Donel!
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Introduction

In C++, any function can call another function.

A function can even call itself.
When a function call itself, it is making a recursive call.

Recursive Call

- A function call in which the function being called is the
same as the one making the call.

Recursion is a powerful technique that can be used in
the place of iteration(looping).

Recursion

- Recursion is a programming technique in which procedures
and functions call themselves.

Computer Science Department



Recursive Algorithm

Definition
- An algorithm that calls itself
Approach

- Solve small problem directly

- Simplify large problem into 1 or more smaller
subproblem(s) & solve recursively

- Calculate solution from solution(s) for subproblem

Computer Science Department



Recursive Definition

A definition in which something is defined in terms
of smaller versions of itself.

To do recursion we should know the followings

- Base Case:
* The case for which the solution can be stated non-recursively
 The case for which the answer is explicitly known.

- General Case:

* The case for which the solution is expressed in smaller
version of itself. Also known as recursive case.

Computer Science Department



Example 1

We can write a function called power that calculates the result of

raising an integer to a positive power. If X is an integer and N is a
positive integer, the formula for X" is

XU X X R Y e

We can also write this formula as

XV XRXE X X Y XY

(NN 1) times

X*X*Xﬁ)ﬁna‘(ﬁ B X

2) times

Also a)s(N

In fact we can write this formula as

XV x*xN!

Computer Science Department



Example 1(Recursive Power Function)

Now lets suppose that X=3
and N=4

XYy 3¢
Now we can simplify the above
equation as

34 3*3°
33 3*32
32 3*3!

So the base case in this
equaﬁonfs

3 3

int Power (int x,int n)

{

if(n==1)
return x; //Base case
else

return x * Power (X, n-1);
Il recursive call

Computer Science Department




Example 2 (Recursive Factorial Function)

Factorial Function:
Given a +ive integer n, n factorial is defined as the
product of all integers between 1 and n, including n.

So we can write factorial function mathematically as

1 ifn O

/() nf (n~ 1) else

Computer Science Department



Example 2 (Recursive Factorial Function)

Factorial definition

NN=nxn-1xn-2xn-3x.,..x3x2x1
ol=1

To calculate factorial of n
- Base case
" Ifn=0, return 1
- Recursive step
 Calculate the factorial of n-1
- Return n x (the factorial of n-1)

Computer Science Department



Example 2 (Recursive Factorial Function)

int factorial(n)

{
if(n == 0) /IBase Case
return 1;
else

return n * factorial(n-1); //Recursion

Computer Science Department



~ Evaluation of Factorial Example
To evaluate Factorial(3)

evaluate 3 * Factorial(2)

To evaluate Factorial(1)
evaluate 1 * Factorial(0)
Factorial(0) is 1

Return 1

Evaluate 1 * 1

Return 1

Computer Science Department



Recursive Programming

<

main

| factorial (3)

\

factorial (3)

return 6

| 3 * factorial (2) < |

|  return 2
A a

factorial (2)|~

| 2*factorial (1) <

\d

| % return 1

faCtOrial(l)mMmJ

| 1*factorial (0) <

M return 1

factorial (0)

Computer Science Department



Rules For Recursive Function

In recursion, it is essential for a function to call itself,
otherwise recursion will not take place.

Only user define function can be involved in recursion.

To stop the recursive function it is necessary to base the
recursion on test condition and proper terminating statement
such as exit() or return must be written using if() statement.

When a recursive function is executed, the recursive calls
are not implemented instantly. All the recursive calls are
pushed onto the stack until the terminating condition is not
detected, the recursive calls stored in the stack are popped
and executed.

During recursion, at each recursive call new memory is allocated to
all the local variables of the recursive functions with the same
name.

Computer Science Department



The Runtime Stack during Recursion

To understand how recursion works at run time, we need
to understand what happens when a function is called.

Whenever a function is called, a block of memory is
allocated to it in a run-time structure called the stack.

This block of memory will contain

- the function’s local variables,

- local copies of the function’s call-by-value parameters,
- pointers to its call-by-reference parameters, and

- areturn address, in other words where in the program the
function was called from. When the function finishes, the
program will continue to execute from that point.

Computer Science Department



Exercise

The problem of computing the sum of
all the numbers between 1 and any
positive integer N can be recursively
defined as:

Z
Z
\®)

N -
Z - N + Z - N + (N-1) + Z

|
0)
(_'_
Q



Exercise

int sum(int n)

{

if(n==1)
return n;

else

return n + sum(n-1);

Computer Science Department



Recursion in ADT

You can also use recursion in the data structures such
as Stacks, queues, linked list, trees etc.

Task

- Write a recursive function Search. Which will search
the given number in the linked list.

- Steps involved in searching

- Base case

- If list is empty or search reached end of the list, return
false

- If number is found in the list, return true

" Recursive step

- Perform recursion for the next node in the list until you
find the required element.

Computer Science Department



Taill Recursion

A recursive function is called tail recursive if only one
recursive call appears in the function and that recursive
call is the last statement in the function body.

Computer Science Department
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Motivations

Suppose you want to find all the files under a
directory that contains a particular word. How do
you solve this problem? There are several ways to
solve this problem. An intuitive solution 1s to use
recursion by searching the files in the
subdirectories recursively.
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Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

n! =n* (n-1)!
0! =1

ComputeFactorial _

n\

!
™

|



factorial(4)

Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

w\

4 S



Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)

n\

4
"

5 s




Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)

6 >



]

Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)
=4 * 3 * (2 * factorial(1))

7 JlI™N
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Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)
=4 * 3 * (2 * factorial(1))
=4 * 3% (2 * (1 * factor1al(0)))

8 IS
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Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)
=4 * 3 * (2 * factorial(1))
=4 * 3% (2 * (1 * factor1al(0)))
=4%3*(2*%(1*1))

9 ™S
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Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)
=4 * 3 * (2 * factorial(1))
=4 * 3% (2 * (1 * factor1al(0)))
=4%3*(2*%(1*1))

Y

i
N

v

10 ™S




]

Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * 3 * factorial(2)
=4 * 3 * (2 * factorial(1))
=4 * 3% (2 * (1 * factor1al(0)))
=4%3*(2*%(1*1))
=4 *3*(2%]) w
—4 %3 %9 m

v

1 ™S




]

Computing Factorial
factorial(0) = 1;
factorial(4) = 4 * factorial(3)

factorial(n) = n*factorial(n-1);

=4 * (3 * factorial(2))
=4 * (3 * (2 * factorial(1)))
=4 * (3 *(2*(1*factorial(0))))

=4% 3% (2% (1* 1))
= 4% (6)

12 "
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Computing Factorial

factorial(0) = 1;
factorial(n) = n*factorial(n-1);

factorial(4) = 4 * factorial(3)
=4 * (3 * factorial(2))
=4 * (3 * (2 * factorial(1)))
=4 * (3 *(2*(1*factorial(0))))
=4% 3 *(2*%(1*1))))
=4*(3*(2%1]))
=4 * (3 *2)
=4%*(6)
=24

13 "



Trace Recursive factorial

Executes factorial(4) |

Step 0: executes factorial(4)

return 4 * factorial(3)

Step 1: executes factorial(3)

Step 8: return 6

return 3 * factorial(2)

Step 2: executes factorial(2)
Step 7: return 2

return 2 * factorial(1)

Step 6: return 1 Step 3: executes factorial(1)

return 1 * factorial(0)
Step 5: return 1 < ! Step 4: executes factorial(0)

return 1

i 'S
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Trace Recursive factorial

factorial(4)

) ! Step 0: executes factorial(4)
Ptep 9 retum 24 (y . Executes factorial(3)

T TTOCU CUTL 141\3)

Step 8: return 6 (y ! Step 1: executes factorial(3)

return 3 * factorial(2)

Step 2: executes factorial(2)
Step 7: return 2

return 2 * factorial(1)

Step 6: return 1 Step 3: executes factorial(1)

return 1 * factorial(0)
Step 5: return 1 < ! Step 4: executes factorial(0)

return 1

& i



Trace Recursive factorial

factorial(4)

Executes factorial(2)

Step 0: executes factorial(4)
Step 9: return 24

return 4 * factorial(3)

Step 8: return 6 actorial(3)

actorial(2)

Step 2: executes factorial(2)

return 2 * factorial(1)

Step 6: return 1 Step 3: executes factorial(1)

return 1 * factorial(0)
Step 5: return 1 < ! Step 4: executes factorial(0)

return 1

o IS



Trace Recursive factorial

factorial(4)

Executes factorial(1)

Step 0: executes factorial(4)
Step 9: return 24

return 4 * factorial(3)

Step 8: return 6 Step 1: executes f;

return 3 * factorial(

xecutes factorial(2)
Step 7: return 2

actorial(1)

Step 3: executes factorial(1)

return 1 * factorial(0)
Step 5: return 1 < ! Step 4: executes factorial(0)

return 1

Step 6: re

¥ IS



I

Trace Recursive factorial

factorial(4)

Executes factorial(0)

Step 0: executes factorial(4)
Step 9: return 24

return 4 * factorial(3)

Step 8: return 6 (y ! Step 1: executes factoria

return 3 * factorial(2)

orial(2)
Step 7: return 2

Step 6: return 1 3: executes factorial(1)

Step 5: Step 4: executes factorial(0)

return 1
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Trace Recursive factorial

factorial(4) returns 1

Step 0: executes factorial(4)
Step 9: return 24

return 4 * factorial(3)

Step 8: return 6 (U ! Step 1: executes factorial(3

return 3 * factorial(2)

Step 7: return 2
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Trace Recursive factorial

factorial(4)

returns factorial(0)

Step 0: executes factorial(4)
Step 9: return 24

return 4 * factorial(3)

Step 8: return 6 (U ! Step 1: executes factg

return 3 * factorial(2)

Step 7: return 2

Step 3: executes factorial(1)

eturn 1 * factorial(0)
?return 1 < ! Step 4: executes factorial(0)

return 1

Step 6: return 1
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Trace Recursive factorial

factorial(4)

returns factorial(1)

Step 0: executes factorial(4)
Step 9: return 24
return 4 * factorial(3)

Step 8: return 6

ep 2: executes factorial(2)

Step 7: return 2

¢turn 2 * factorial(1)

Step 3: executes factorial(1)

q"n 1 * factorial(0)
Step 5: return 1 < ! Step 4: executes factorial(0)

return 1

&l i



Trace Recursive factorial

factorial(4)

returns factorial(2)

Step 0: executes factorial(4)
Step 9: return 24

return 4 * factorial(3)

Step 8: return 6 actorial(3)

factorial(2)

Step 2: executes factorial(2)

return 2 * factorial(1)

Step 6: return | Step 3: executes factorial(1)

return 1 * factorial(0)
Step 5: return 1 < ! Step 4: executes factorial(0)

return 1

& 'S



Trace Recursive factorial

factorial(4)

returns factorial(3)

Step 0: executes factorial(4
Step 9: return 24

Step 1: executes factorial(3)

il

return 3 * factorial(2)

Step 2: executes factorial(2)
Step 7: return 2

return 2 * factorial(1)

Step 6: return | Step 3: executes factorial(1)

return 1 * factorial(0)
Step 5: return 1 < ! Step 4: executes factorial(0)

return 1
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Trace Recursive factorial

returns factorial(4)

Step 0: executes factorial(4)
n 24

return 4 * factorial(3)

Step 8: return 6 (U ! Step 1: executes factorial(3)

return 3 * factorial(2)

Step 2: executes factorial(2)
Step 7: return 2

return 2 * factorial(1)

Step 6: return | Step 3: executes factorial(1)

return 1 * factorial(0)
Step 5: return 1 < ! Step 4: executes factorial(0)

return 1
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factorial(4) Stack Trace




Other Examples

f(0) = 0;
f(n) = n + f(n-1);

26 L



Fibonacci Numbers

Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89..
indices: 01 2 345 6 7 8 9 10 11

fib(0) = 0;
fib(1) = 1;
fib(index) = fib(index -1) + fib(index -2); index >=2

fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1) = (1
+Hib(1)=1+fib(1)=1+1=2

ComputeFibonacci -
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Fibonnaci Numbers, cont.

fib(4)

17: return fib(4)

10: return fib(3) ‘%
1: call fib(3) 16: return fib(2)
rwm + fib(1

2: call fib(2)

0: call fib(4)

11: call fib(2)

eturn fib(1) + ﬁb(g
/ 14: return fib(0)

13: return fib(1) 12: call fib(1)
15: return fib(0) M
eturn 1 return

7: return fib(2)

9: return fib(1)

5: call fib(0)
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Characteristics of Recursion

All recursive methods have the following characteristics:

- One or more base cases (the simplest case) are used to stop
recursion.

- Every recursive call reduces the original problem, bringing it
increasingly closer to a base case until it becomes that case.

In general, to solve a problem using recursion, you break it

into subproblems. If a subproblem resembles the original\,
problem, you can apply the same approach to solve the A"
subproblem recursively. This subproblem 1s almost the
same as the original problem in nature with a smaller siz¢

2 i



Problem Solving Using Recursion

Let us consider a simple problem of printing a message for
n times. You can break the problem into two subproblems:
one 1s to print the message one time and the other 1s to print
the message for n-1 times. The second problem 1s the same
as the original problem with a smaller size. The base case
for the problem 1s n==0. You can solve this problem using
recursion as follows:

nPrintin(“Welcome”, 5);

public static void nPrintln(String message, int times) {
if (times >=1) {
System.out.println(message);
nPrintln(message, times - 1);
} // The base case 1s times == ()

} \

5 i
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Think Recursively

Many of the problems presented in the early chapters can
be solved using recursion 1f you think recursively. For

example, the palindrome problem can be solved recursively
as follows:

public static boolean isPalindrome(String s) {
if (s.length() <= 1) // Base case
return true;
else if (s.charAt(0) != s.charAt(s.length() - 1)) / Base case
return false;
else
return 1sPalindrome(s.substring(1, s.length() - 1));

b
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Recursive Helper Methods

The preceding recursive 1sPalindrome method 1s not
efficient, because it creates a new string for every recursive
call. To avoid creating new strings, use a helper method:

public static boolean isPalindrome(String s) {
return isPalindrome(s, 0, s.length() - 1);
h
public static boolean isPalindrome(String s, int low, int high) {
if (high <=low) // Base case
return true;
else if (s.charAt(low) !=s.charAt(high)) // Base case
return false;
clse
return 1isPalindrome(s, low + 1, high - 1);

b
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1.

2.

Recursive Selection Sort

Find the smallest number in the list and swaps it
with the first number.

Ignore the first number and sort the remaining
smaller list recursively.

RecursiveSelectionSort

% S



Recursive Binary Search

Case 1: If the key 1s less than the middle element,
recursively search the key in the first half of the array.

Case 2: If the key 1s equal to the middle element, the
search ends with a match.

Case 3: If the key 1s greater than the middle element,
recursively search the key in the second half of the
array.

RecursiveBinarySearch I
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Recursive Implementation

/** Use binary search to find the key in the list */

public static int recursiveBinarySearch(int[] 1list, int key) {
int low = 0;
int high = list.length - 1;

return recursiveBinarySearch(list, key, low, high);

/** Use binary search to find the key in the list between
list[low] list[high] */
public static int recursiveBinarySearch (int[] list, int key,
int low, int high) {
if (low > high) // The list has been exhausted without a match

return -low - 1;

int mid = (low + high) / 2;
if (key < list[mid])

return recursiveBinarySearch(list, key, low, mid - 1);
else if (key == list[mid])

return mid;

else 35 I
return recursiveBinarvSearch(list. kev. mid + 1. hiagh) :



Directory Size

The preceding examples can easily be solved without using
recursion. This section presents a problem that 1s difficult
to solve without using recursion. The problem 1s to find the
size of a directory. The size of a directory 1s the sum of the
sizes of all files 1n the directory. A directory may contain
subdirectories. Suppose a directory contains files , , ..., ,
and subdirectories , , ..., , as shown below.
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Directory Size
follows:

size( f,) size( f,)

The size of the directory can be defined recursively as
size(d) si

;

size(f, ) size(d,) size(d,)

,) ... size(d))

DirectorySize
” quw
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Tower of Hano1

There are n disks labeled 1, 2, 3, . . ., n, and three
towers labeled A, B, and C.

No disk can be on top of a smaller disk at any
time.

All the disks are initially placed on tower A.

Only one disk can be moved at a time, and 1t
must be the top disk on the tower.
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Tower of Hano1 _cont
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i Step 1: Move disk 1 from A to B i E Step 5: Move disk 1 from C to A
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i Step 3: Move disk 1 from B to C o Step 7: Move disk 1 from A to B !
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Solution to Tower of Hanoi

The Tower of Hanoi problem can be decomposed into three

subproblems

m_ﬂ, |||||||||| 1 "
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A to C recursively
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Solution to Tower of Hano1

Q Move the first n - 1 disks from A to C with the assistance of tower
B

O Move disk n from A to B.
O Move n - 1 disks from C to B with the assistance of tower A.

TowerOfHano1 i
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Exercise 18.3 GCD

gcd(2,3)=1
gcd(2, 10) =2
gcd(25,35)=5
gcd(205, 301) =5

gcd(m, n)

Approach 1: Brute-force, start from min(n, m) down to 1,
to check if a number 1s common divisor for both m andﬁé
if so, 1t 1s the greatest common divisor.

Approach 2: Euclid’ s algorithm

Approach 3: Recursive method
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Approach 2: Euclid’ s algorithm

// Get absolute value of m and n;
tl Math.abs(m); t2 = Math.abs(n);
// r is the remainder of tl divided by t2;
r =tl $ t2;
while (r '= 0) {
tl = t2;

// When r is 0, t2 is the greatest common I
// divisor between tl1 and t2 ~
return t2; i

i i




Approach 3: Recursive Method

gcd(m, n) =n1fm % n = 0;
gcd(m, n) = gcd(n, m % n); otherwise;

N

ﬂ@
>
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Fractals?

A fractal 1s a geometrical figure just like
triangles, circles, and rectangles, but fractals
can be divided into parts, each of which 1s a
reduced-size copy of the whole. There are
many interesting examples of fractals. This
section introduces a simple fractal, called
Sierpinski triangle, named after a famous
Polish mathematician.

4
&Y,
D
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Sierpinski Triangle

It begins with an equilateral triangle, which 1s considered to be
the Sierpinski fractal of order (or level) 0, as shown 1n Figure
(a).

Connect the midpoints of the sides of the triangle of order 0 to
create a Sierpinski triangle of order 1, as shown 1n Figure (b).

Leave the center triangle intact. Connect the midpoints of the
sides of the three other triangles to create a Sierpinski of order
2, as shown 1n Figure (c).

You can repeat the same process recursively to create a

Sierpinski triangle of order 3, 4, ..., and so on, as shown 1n

Flgure (d). N
rangle I[=TEq o] _lofx|

| £ £

1 | Enter an order: | 2 Ent d |
- : nter an order:

Enter an order: ‘ 0 ‘ Enter an order: |
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Sierpinski Trlangle Solution

Draw the Sierpinski triangle

displayTriangl es(order, pl, p2

, p3)

p3
(a)

pl

Recursively draw the small Sierpinski triangle
displayTriangles(

order - 1, pl, pl2, p3l)

Recursively draw the small pl2

Sierpinski triangle

displayTriangles(

p31l
order - 1, pl2, p2, p23)

Recursively draw the

small Sierpinski triangle \
displayTriangles(
3/
p23

order - 1, p31l, p23
p3

p2

, p3)

N
SierpinskiTriangle “]I'|
47
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Recursion vs. Iteration

Recursion 1s an alternative form of program
control. It 1s essentially repetition without a loop.

Recursion bears substantial overhead. Each time
the program calls a method, the system must assign
space for all of the method’s local variables and
parameters. This can consume considerable
memory and requires extra time to manage the
additional space.

/
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Advantages of Using Recursion

Recursion 1s good for solving the problems that are
inherently recursive.

\

L

4

P

49 >




Tail Recursion

A recursive method 1s said to be fail recursive 1f
there are no pending operations to be performed on
return from a recursive call.

Non-tail ComputeFactorial
recursive
Tail recursive ComputeFactorialTailRecursion

= QIS



The Towers of Hanoi
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A Legend

Legend has it that there were three diamond needles set
into the floor of the temple of Brahma in Hanoi.

Stacked upon the leftmost needle were 64 golden disks,
each a different size, stacked in concentric order:



mailto:adams@calvin.edu

A Legend (Ctd)

he priests were to transfer the disks from the first needle
o the second needle, using the third as necessary.

C_ ]

But they could only move ene disk at a time, and could
never put a larger disk on top of a smaller one.

When they completed this task, the world would end!
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To Illustrate

or simplicity, suppose there were just 3 disks, and we’ll
efer to the three needles as A, B, and C...

L |

Since we can only move one disk at a time, we move the
top disk from A to B.
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Example

or simplicity, suppose there were just 3 disks, and we’ll
efer to the three needles as A, B, and C...

. ||

We then move the top disk from A to C.
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Example (Ctd)

or simplicity, suppose there were just 3 disks, and we’ll
efer to the three needles as A, B, and C...

b ||

We then move the top disk from B to C.
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Example (Ctd)

or simplicity, suppose there were just 3 disks, and we’ll
efer to the three needles as A, B, and C...

b | L

We then move the top disk from A to B.
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Example (Ctd)

or simplicity, suppose there were just 3 disks, and we’ll
efer to the three needles as A, B, and C...

| L

We then move the top disk from C to A.
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Example (Ctd)

or simplicity, suppose there were just 3 disks, and we’ll
efer to the three needles as A, B, and C...

b ||

We then move the top disk from C to B.
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Example (Ctd)

or simplicity, suppose there were just 3 disks, and we’ll
efer to the three needles as A, B, and C...

b L |

We then move the top disk from A to B.
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Example (Ctd)

or simplicity, suppose there were just 3 disks, and we’ll
efer to the three needles as A, B, and C...

and we're done!

The problem gets more difficult as the number of disks
Increases...


mailto:adams@calvin.edu

Our Problem

oday’s problem is to write a program that generates the
nstructions for the priests to follow in moving the disks.

While quite difficult to solve iteratively, this problem has
a simple and elegant recursive solution.
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Analysis

or flexibility, let's allow the user to enter the number of
isks for which they wish a set of instructions:

* hanoi.cpp
*

*/...
oid Move (int n, char src, char dest, char aux);

nt main ()

cout << “\n\nThe Hanoi Towers!\n\n”
<< “Enter how many disks: “;
int numDisks;

cin >> numDisks;

Move (numDisks, ‘A’, ‘B’, ‘C’);
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Analysis (Ct'd)

ur task, then is to write function Move() that does all
he work:

* hanoi.cpp
*

oy

oid Move (int n, char src, char dest, char aux) ;

nt main ()

cout << “\n\nThe Hanoi Towers!\n\n”
<< “Enter how many disks: “;
int numDisks;

cin >> numDisks;

Move (numDisks, ‘A’, ‘B’, ‘C’);
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Design

asis: What.is an instance of the problem that is trivial?

Since this base case could occur when the disk is on any
needle, we simply output the instruction to move the
top disk from src to dest.

—
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Design

asis: What.is an instance of the problem that is trivial?

Since this base case could occur when the disk is on any
needle, we simply output the instruction to move the
top disk from src to dest.

—
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Design (Ctd)

nduction Step: n > 1

— How can recursion help us out?

a. Recursively move n-1 disks from src to aux.
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Design (Ctd)

nduction Step: n > 1

— How can recursion help us out?

b. Move the one remaining disk from src to dest.
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Design (Ctd)

nduction Step: n > 1

— How can recursion help us out?

C. Recursively move n-1 disks from aux to dest...
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Design (Ctd)

nduction Step: n > 1

— How can recursion help us out?

=

L ]

d. We're done!
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Algorithm

e can combine these steps into the following algorithm:
Receive n, src, dest, aux.

If n> 1:

a. Move(n-1, src, aux, dest);

b. Move(1l, src, dest, aux);

c. Move(n-1, aux, dest, src);
Else

Display "Move the top disk'from *, src, " to °, dest.
End if.
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Coding

//
void Move(int n, char src, char dest, char aux)
b
if (n > 1)
Move (n-1, src, aux, dest);
Move (1, src, dest, aux);
Move (n-1, aux, dest, src);
else

cout << “Mowve the toR disk from “
<L src <L Y to << dest << endl;
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Testing

The Hanoi Towers

Enter how mang disks:
Move the top disk from A to B
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Testing (Ctd)

The Hanoi Towers

Enter how mang disks:

Move the to isk from A to C
Move the top disk from A to B
Move the top disk from C to B
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Testing (Ctd)

The Hanoi Towers

Enter how many disks: 3

Move the top disk from A to B
Move the top disk from A to C
Move the top disk from B to C
Move the top disk from A to B
Move the top disk from C to A
Move the top disk from C to B
Move the top disk from A to B
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Testing (Ctd)

The Hanoi Towers

Enter how many disks: 4 .
move a dis rom needle o needle B
move a g4is rom neeqdle o needle
move a qis rom neeqdle o needle
move a 4is rom neeqle o needle
move a 4i1s rom neeqdle o needle
move a g4is rom neeqdle o needle
move a 4is rom neeqle o needle
move a 4is rom neeqle o needle
move a 4is rom neeqdle o needle
move a 4is rom neeqdle o needle
move a 4is rom neeqdle o needle
move a 4is rom neeqle o needle
move a 4is rom neeqle o needle
move a dis rom needle o needle
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Analysis

et's see how many moves” it takes to solve this problem,

s a function of n, the number of disks to be moved.
Number of disk-moves required

1
3
/
15
31

2i-1
4 264-1 (a big number)
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Analysis (Ctd)

ow big?

uppose that our computer and “super-printer” can
enerate and print 1,048,576 (220) instructions/second.

ow long will it take to print the priest’s instructions?

There are 264 instructions to print.
- Then it will take 264/220 = 244 seconds to print them.

1 minute == 60 seconds.
- Let's take 64 = 26 as an approximation of 60.

- Then it will take [1244 / 26 = 238 minutes to print them.
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Analysis (Ctd)

mm. 238 minutes is hard to grasp. Let’s keep going...

1 hour == 60 minutes.
- Let's take 64 = 26 as an approximation of 60.

- Then it will take L1238 / 26 = 232 hours to print them.

1 day == 24 hours.
- Let's take 32 = 25 as an approximation of 24.

- Then it will take [1232 / 25 = 227 days to print them.
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Analysis (Ctd)

mm. 227 days is hard to grasp. Let’s keep going...

1 year == 365 days.
- Let's take 512 = 29 as an approximation of 365.
- Then it will take L1227 / 29 = 218 years to print them.

1 century == 100 years.
- Let's take 128 = 27 as an approximation of 100.

- Then it will take [1218 / 27 = 211 centuries to print them.
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Analysis (Ctd)

mm. 211 centuries is hard to grasp. Let’s keep going...

1 millenium == 10 centuries.
- Let’s take 16 = 24 as an approximation of 10.

- Then it will take L1211 / 24 = 27 = 128 millenia
just to print the priest’s instructions (assuming our computer
doesn’t crash, in which case we have to start all over again).

ow fast can the priests actually move the disks?

‘Il leave it to you to calculate the data of the apocalypse...
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Summary

ecursion is a valuable tool that allows some problems to
e solved in an elegant and efficient manner.

unctions can sometimes require more than one recursive
all in order to accomplish their task.

here are problems for which we can design a solution,
ut the nature of the problem makes solving it effectively
ncomputable.
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