R

Y

I

Principles of Soft Computing

{2hd Edition)

Dr. 5. N. Sivanandam
Formerly Professor and Head
Department of Electrical and Electronics Engineering and
Department of Computer Science and Engineering,
PSG College of Technology,
Coimbatore

Dr. 5. N. Deepa
Assistant Professor
Department of Electrical and Electronics Engineering,
Anna University of Technology, Coimbatore
Coimbatore

WILEY

- About the Authors

Dr. §. N. Sivanandam completed his BE (Electrical and Electronics Engineering) in 1964 from Government
College of Technology, Coimbatore, and MSc (Engineering) in Power System in 1966 from PSG College of
Technology, Coimbatore. He acquired PhD in Control Systems in 1982 from Madras University. He received
Best Teacher Award in the year 2001 and Dhakshina Murthy Award for Teaching Excellence from PSG
College of Technology. He received The CITATION for best teaching and technical contribution in the Year
2002, Government College of Technology, Coimbatore. He hasa total reaching experience (UG and PG} of 41
years. The toral number of undergraduate and posrgraduate projeces guided by him for both Compurer Science
and Engineering and Electrical and Elecrronics Engineering is around 600. He has worked as Professor and
Head Computer Science and Engineering Department, PSG College of Technology, Coimbatore. He has
been identified as an outstanding person in the field of Computer Science and Engineering in MARQUIS
“Who's Who', October 2003 issue, USA. He has also been tdentified as an outstanding person in the field of
Computational Science and Engineering in "Who's Who', December 2003 issue, Saxe-Coburg Publicarions,
UK. He has been placed as a VIP member in the continental WHO’s WHO Registry of Narional Business
Leaders, Inc., NY, August 24, 20006. '

A widely published author, he has guided and coguided 30 PhD research works and at present 9 PhD
research scholars are working under him. The total number of rechnical publications in Internarional/National
Journals/Conferences is around 700. He has also received Cerificate of Merit 2005-2006 for his paper from
The Institution of Engineers (India). He has chaired 7 Internarional Conferences and 30 Narional Conferences.
He is a member of various professional bodies like IE (India), ISTE, CSI, ACS and SSI. He is a technical
advisor for various reputed industries and engineering institutions. His research areas include Modeling and
Simulation, Neural Networks, Fuzzy Systems and Genetic Algorithm, Patrern Recognition, Multidimenstonal
system, Numerical methods, Parallel Computing, Data Mining and Database Security.

Dr. 5. N. Deepa has completed her BE Degree from Government College of Technology, Coimbaore,
1999, ME Degree from PSG College of Technology, Coimbatore, 2004, and Ph.D. degree in Electrical
Engineering from Anna University, Chennai, in the year 2008. She is currencly Assistant Professor, Dept. of
Electrical and Electronics Engineering, Anna Universiry of Technology, Coimbatore. She was a gold medalist
in her BE Degree Program, She has received G.D. Memorial Award in the year 1997 and Best Ourgoing
Student Award from PSG College of Technology, 2004. Her ME Thesis won Nartional Award from the Indian
Sociery of Technical Education and L&T, 2004, She has published 7 bocks and 32 papers in Internarional
and Nattona! Journals. Her research areas include Neural Nerwork, Fuzzy Logic, Genetic Algorithm, Linear
and Nonlinear Control Systems, Digiral Control, Adaptive and Oprimal Control.

Contents
[T

g T PPN ¥
About the Authors ..o e viii
1. Introductionococvvenriiiennnnnnnn, SRR PRT PPN, 1
Learning ObJECtIVEScvuiiiiic st e e e 1
1.1 Neural Networks ..oonie i e 1
L1.1 Artificial Neural Network: DefnItionveeeeeesvereeeeeeceinrrreesssaseeneeeeeens 2
1.1.2 Advanrages of Neural Networksiivvienneiiiiiii i 2
1.2 Application Scope of Neural Networksooiiiiiiiiiiiiiin e 3
. 1.3 Fuzzy LOGIC coueie i e e 5
14 Genetic Algorithmiiviiiiiiiiiiiiiere e e 6
1.5 Hybrid Systems .o.veuevoiem it s 6
1.5.1 Neuro Fuzzy Hybrid Systemscouoiiveniiece e 6
1.5.2 Neuro Genetic Hybrid Systemscoooiiiiiiiiiiiiniiicinnnsaan s 7
1.53 Fuzzy Genetic Hybrid Systems ...ovviiii 7
1.6 Soft COmPULNE ...viviciiin e e 8
1.7 Summary ..o e 9
2 ificial Neural Network: An Introductionooooeiiiiiiiiiciiie, 11
Learning ODbJECtivEsovuuiiiiiin i it i sis s s aaaa e s e 11
2.1 PFundamental CONCEPEiiviiiiiiii it 11
2.1.1 Arifictal Neural Networkcooiiiiiiiiiii it e acee 11
2.1.2 Biological Neural Networkuvoiieieniini i 12

213 Brain vs. Computer — Comparison Berween Biological Neuron and Astificial
Neuron (Brain vs. COMPUIEE)cvuiiiiiiemin i iecic i tr e 14
2.2 Evolution of Neural Networksucurienrccrmriiiii e nn e 16
2.3 Basic Models of Arificial Neural Neowork ..o 17
2.3.1 CONNECTIOMS 11vnneneneeninenmsmmeea e eeeearnsrnsrasnannanear e e e rnransarnr s raenees 17
232 Learming ..ooovuniiiiiiiie et e e e 20
2.3.2.1 Supervised Learningooioviiiiii 20
2.3.2.2 Unsupervised Learning «........ooovmeiiiiiinnniniininnrinsmennaiaes 21
23.2.3 Reinforcement Learningovvueeiiiniiiiiiiiiiiiins s 2]
2.3.3 Actvation FunCions -.....coveieiieiiiiii i e 22
24 Impormant Terminologies of ANNscooiiiiiii s 24
24,1 Weightso.ooieennd U e e e taeateeeeeiataenearaanaaaare e 24
By R - 7 T RS 24
243 Threshold ..ot 26
244 Learning Rate ...oo.oooiiiiiiiiiivemii e e e 27
2,45 MOMENTUIN FACTOT wreuetitittiitie et e icieiarmaaraa e s aa s sa s anis e e e annn e 27
24.6 Vigilance Parameterooooiiiiiii oot 27
247 NOBUOMS 1evvvenesneenenerueranesestasessustssssasnerssrsbstinaisbeesnsssanesnrnnsieacesss 27
2.5 McCulloch-Pitts NEUION ..o.uteee it r e nn s ae 27

X Contents . Contents xi
— r d
251 TREOMY « e et et 7) 35.5.5 Number of Training Data AAREEAREAEA N A AL AR AL 72
252 ACCRIGECEUTE cv...roerocerorerrseesesesseasssesssesessnes s ens e nne e rseecniaas 28 ‘ 3:5.5.6 = Number of Hidden Layer Nodesvocvvvvvensssneiesctessinieens 72
2.6 LiNar Separability ..., . c.ocuusrisnceneesunrierescesnes s b e 29. 356 Testing Algorithm of Back-Propagarion Newworkoeovvvvvvvvvncciiiisns 72
27 Hebb Nerwork ...rviiio i e 31 5.6 Radial Basis Function Network L
27.1 TREOEY ¢reveseereeseeseeseesrneseesseseesneeecesreesesassessentssssssassenssessscens 31 361 Theory voovveieiin .
272 Flowchart ofTraining Algoridlm _______________________ I 31 3.6.2 Architecrure RRRRLRNIEIE R e e r ey
2.7.3 Training Alporithm ..o e 31 3.6.3 Flowchart for Trzum.ng PrOCESS ..ot
2.8 SUIMMAIY «1tnniit e eieee et cee e s et i et rerr bt e et e b e tae e e e e e e e e nnnaeeeebaaaan 33 ; 3.64 Training AIRORIthm ... cuviemeii
2.9 SOWVEd PrOBIEIIIS ©..oveovevrvecereeeeseteeeeeeeeeres e e eee st et et e e et e et e, 33 3.7 Time Delay Neural Necwork SRR L R R LR LU L L LR
210 REviEw QUESHONS +vrv.vvrevvrerseessrereessreeeeesseeessoesssessssessseseseesesesstosresresoe 46 3.8 Funcrional Link Networkscooooviirreiiiiiiiiiie e ess e s s s ee s s oo e e srennnnan e
211 Exercise PRoBlEms ...t ivt i veeiemeneee e e e s 46 3.9 Tree Neural Networks «....o.ooovivesriniiic
212 PROJECES 1111+ reverevsareseessassoees et seessessst s sttt 47 310" Wavelet Neural NetWOrksooooerurssniinensi
F1L SUMMALY -ttt e e e e et e arar e aaaas
3. Supervised Learning Network ... 49 3.12 Solved ProbIems «.uvvuu e e i it e e
Learning OBJECVEScceiiiiirivmiinnearrirssieeie et e s st e s ssriaens 49 ‘ © 313 RevieW QUESTIONS .vevvreveieeetesesstteeeeereesneeaesessseseeeeessneeeseeeerreseeeseeeeeans
731 IROROAUGHON -ooeviviec i 49 314 Exercise PIODLEMS «.ov.neeeeeoeies i et s e oo e e e e e e e e s e e e e e e e ee e
L 3.2 Perceprron Networks ...oivveeioeriesiiiiniii 49 3E5 PLOJECIS 1unaeiiie e e e e eee ettt i i oot s s bt a e r e e e et e e e e e e e e e e eeeere e e e rr e arrannnaes
‘ 321 TREOFY ooovvniiii ittt 49 ..
‘ 322 Perceptron Learming RUE .ec.vv. e vrovoereereeseeseseeesoeeseoeseoesees s seoseenesse 51 4. Associative Memory NEtWOTKSc.coviriiivieeeieteaeeei it iee s anea 97
P 323 Architectreoovviiiiiiiiiiiiii e e e 52 _// Learning ObJectivesccoooiriiiiiiii 97
S 324 Flowchart for TEining PIOGESS -.......ovevvovovossssssesrereeresesesaeenesereseeeeeass 52 fo41 Inrl:on:lucrion .. 97
: 3.2.5 Perceptron Training Algorithm for Single Outpur Classesceocciiiiiiiinnnnne. 52) 42 Training Algorithms For Partern Associationc..oovuveiriiiiiiiere e ssreesceeee s 98
! 3.2.6 Perceptron Training Algorithm for Multiple Output Classesov..ovovevvenn.. 54 421 Hebb Rule «.vvuiiiiiiiieie e e 98
N 3.27 Perceptron Nerwork Testing AJgorirhm _____________________________ et 55 422 OuterProducts Rule ... e 100
3.3 Adaptive Linear Newron {AQaline)ovoveeerivrorereseeseeseseeseeeseeseneesenens 57 43 Auroassociative Memory Networkoooiiiiiereriieiiiiiiiiie e 101
3.3.1 Theory __ e 57 4.3.1 ThEOr)' ... 101
332 Dela Rule for Single Output Unitcvoviveersisieeeen e eiesee e eeeiananes 57 432 AICRITECIUTE 11uiveiii e e 101
333 ATCBIECIULE o on e oo 57 4.3.3 Flowchart for Training Processvverrrruusireeeereeesionaaaeeareseeeeeeerneeonees 101
3.3.4 Flowchat for Training PrOCESS -...e.o.rvevvreeeeeesiseeeseresosessseeneeesnesee o 57 7 434 Training Algorithmooiiiiii i e e 103
335 TRAINIng AIBOTIAIM .. .ocvv oot eeeeceeeees et eee e ee et ees e e eeereeeis 58 43.5 Testing Algorichm ... et v 103
3.3.6 Testing Algorithu T 0 4.4 Heteroassociative Memory Networkc.eorvreiriiiiiicee i e ce s e 104
3.4 Muldple Adaprive Linear Neuronsccoceeiiiiiiiiiiii it eeaes 60 441 TREOTY 1ot 104
B4 TREOKY o vevetetee e eeeeee et e et en e ettt e et 60 442 AchiteCtube «...oooviiii e e e 104
342 ATCNICCEUIE oo G0 443 Testing Algorithmoooiiiiiiiiiiii e e 104
343 Flowchart of Training PIOESS ...o...v.veereersoseeeseraeereees e eeeeeeesreeres 60 4.5 Bidirecrional Associative Memory (BAM) ... 105
3.4.4 Training AlgOFIthM ..ovovvieiieeens st 61 . 5.1 TREOIY oo 105
3.5 Back-Propagation Networkoooiiiiiiiiiiiii i e e a G4 452 ATCRITCTUIR ..ot 105
3.5.1 TREOIY .vvoveere it e e G4 4.5.3 Discrere Bidirectional Associative Memorycccoeeiiiiii, 105
3.5.2 Architectiire ... couiiiiimiii e e e 65 4.53.3.1 Decermination of Weights ..o 106
3.5.3 Flowchart for Training Processoocveivereeessesesieeeeseeeseeeeeserenn 66 4.53.2 Activation Functions for BAMcoooiiiiiiiiniiinn e, 107
354 Training Algorithmc.ocovveiivrinnnnn e s 66 4.5.3.3 Testing Algorithm for Discrete BAM ..., 107
3.5.5 Leatning Factors of Back-Propagation NeEworkc.ocvuveeveerreeeenn. 70 454 Continuous BAM ... it 108
3.5.5.1 Initial WRIBHTS +ovvv.vivveeeeietseee s e ceteeeeeeneseee e e eeneeeeeeeeenns 70) 4.5.5 Analysis of Hamming Distance, Energy Function and Storage Capacity 109
3.5.52 Learmimg RAE @ «..oovovrvervoreseeooes oo 71 %6 Hopfield Networksccoovvii i 110
. 3.5.53 Momentum Factor «.oooo oot 71 4.6.1 Discrece Hopfield Network ... 110
3554 Generalization 72 - 4.6.1.1 Architecturc of Discrete Hopfield Netcoveiiieiiiinniiecinnnnes 111

xii

Contenis
4.6.1.2 Training Algorithm of Discrete Hopfield Net «..ovviiviniiiiiiiiiinns 111
4.6.1.3 . Testing Algorithm of Discrete Hopfield Net ...o.cvunniiieiiiiiiniinnn 112

4,614 Analysis of Energy Function and Storage Capacicy on Discrete
Hopfield Netooviiiniieiiis i iinnneee st 113
46.2 Continuous Hopfeld Networkcvvioiiiiriininiiiiiinnres s 114
4.6.2.1 Hardware Model of Continuous Hopfield Networkocoeeis 114
4.6.22 Analysis of Energy Function of Continuous Hopfield Network 116
47 Trerative Auroassociative Memory Networks ..o 118
47.1 Linear Autoassociative Memory (LAM) ..o 118
47.2 Brain-in-the-Box Networkc.ocimiiim 118
4721 Training Algorithm for Brain-in-the-Box Modelcccoiiinnnnnn 119
47.3 Aucoassociator with Threshold Unie ..., 19
4.73.1 Testing Algorithm «oovuvvieiiienn i 120
4.8 Temporal Associative Memory Networkoooiiiiiniiim 120
49 SWITALY +ooeereiiiiiiiiiiiriat e e s e e s s e st 121
4,10 Solved PrOBIEMS cvuneeeemeeiaerreree st e e a e e et 121
411 Review QUESTIONS cuvrrrrrrrerroissiiassiassaseirnrcine s st bbby e 143
412 Exercise Problems vuuveeeieiieorrinsiiiiiiini s s s 144
£.13 PLOJECTS «uuvererruneeeeemsursinsssmree s ot bne s e a e s i L e e e 146
5. Unsupervised Learning Networks ... 147
Learning ObJECTiVes ...o.oo.vurerrriaiseniires et b 147
51 INEEOGUGIION «oiuretiietieeea et rrr i ar e et e et e s e r s s 147
5.2 Fixed Weight Competitive Nets «.oovvevii e 148
52,1 IMEXDEE oeeneereemrunsreaerarearne s e ra e e it et s s n e 148
5.2.1.1 Architecture of MaXnerovveeivneinaiinin i 148
5.2.1.2 Testing/Application Algorithm of Maxneroooiiins 149
5.2.2 Mexican Hat Net ...oooommiieaniinriomnnnnn e aerraeeeeeerereoeiaereiinan e iaeaaes 150
5221 ArchIteCTUre «ovuee it i 150
5222 FIOWCHEIT 1vuneeeeeiniiiieii et e e n e 150
5223 Algorithmocoooiiiiii 152
523 Hamming Nemwork ...ooovvieeer oo 153
5231 Architetrure 1 ovv e ieruiere e er e erir e e 154
5.23.2 Testing Algorithmvvviiiiiiiiiiiii 154
53 Kohonen Self-Organizing Feature Maps ... 155
f 7 B VT o U PP PP PP IS SRS PR 155
T 532 ARchiteCrUre L.oociii 156
“ 533 FLOWCRATT vovvvinireee it iit e e et e re e s s ru e 158
53.4 Training Algorithm ... 160
/\ 53.5 Kohonen Self-Organizing Motor Map ..o 160
5.4 Learning Vector QUantizationococoiiiiiiiiiiiinnesee e 161
541 THEOMY «eeeeeeeiaammmmmneeee s et 161
542 ATCDITECIUIE ..\ eutiitettarmmremrtrenssrneanaas s e sm e ae i ana s trn e o n oo matecana s sbnan 16l
N SA.F . FLOWENAIT < eeeteeeeie e e seccen e et e s e eeeaasad e oo e 162
! 544 Training Al «.o.ovovreiiiic e 162
545 VAEIATIES .%veneemnsennennsennemmsranstnnsssssmnemrussssasssitnasmnaannamcaomthtsssrnannsas 164

Contents Xiii
54.5.1 LVQ2.iiiia PPy 164

5452 LVQ21 wevorernnn. et bbb 165

54,53 LVCED wrvrresserses tereasesesesesesss s cscn et ena s 165

5.5 Counterpropagation Nerworks TP PRSP PR UPPI 165
5.5.1 Theory vuveeeeeunrernrenininnn, PP PP 165

5.5.2 Full Counterpropagation Netcvvvviiiveniin., TP 166
5.5.2.1 ATCHITBOILEE -0 veuevenurenrersussansssssssirsasrrnasasiasssenrnstebienanes 167

5.5.2.2 FLOWCRALT c'ivvnierrnerrnieiiiinsisssisis st e e srrese s 169

5.5.23 Training Algomithin .o.eooiveieiiinniinn e e 172

5.5.2.4 Testing (Application) Algorithm ...coviviniiiiin 173

5.5.3 Forward-Only Counterpropagation Netvuuveeemminns 174
5.5.3.1 ATCRITECIUIE . evuuvnnsvnsrrnremrsiistiissssrreensmnasa s s ane et tanaaes 174

5.5.3.2 FLOWEHAIT cuunereoicriniiran e s anaa s e s e 175

5.5.5.3 Training Algorithm ...ceviiiiiiiiiien e e 175

55.3.4 Testing Algorithm ... ocrervin i 178

5.6 Adaprive Resonance Theory Network ..oooooiion e 179
56,1 TREOIY ©ieeeeeeeierereeririmmmriiiieieeininnnns st er st s s s e e s e et 179
5.6.1.1 Fundamental ArchiteCrureviuiirivenieis i 179

5.6.1.2 Fundamental Operating Principle ..., 180

5.6.1.3 Fundamental Algorithmcocoiiiiiiiiiin 181

5.62 Adaptive Resonance Theory 1 ... 181
5.6.2.1 Architectureooeniiin bt eeeatere e iiireaarteraaarraaen et 182

5.6.2.2 Flowchart of Training PLOCESS «vvveenevreereesssssemennsanssnnenesinnienns 184

5.6.2.3 Training Alporithimooieviereimmmie i 184

5.6.3 Adaptive Resonance Theory 2ooueoerivineinnnins s 188
5.6.3.1 ATCHITEETUIE 1 1vreie ittt ieeaac e e icur s r et b an e st et e et enes 188

5.6.3.2 AlOrithm ..o i 188

5.6.3.3 TlOWCHAIT 4vvivneirirrreirermtiareierstansstresernaaan s cn s rentnsnnanss 192

5.634 Training Algorithm eeee e e e enaaas 195

5.6.3.5 Sample Values of Paramerercoociiimmmmmmmniinnis 196

5.7 SUNMIMALY +eeeessnnreneereanasasamamseeeessaaarsrss s s s snrrsas bbb tnn s s s s D 197
5.8 S0lved Problems uvsueeieniir e iener e et e e et e 197
5.9 Review QUESTIONSuuvrrrmeerrsrnssssrsreerrer bt sassne s s e s e i s 226
5,00 EXEICISE PIODIEIIS ¢ 1vvevnienieiiiae e en e en e eeeaesn e r s s a e e st s e d st 227
S0 B B T R RRMAALLE 229
6. Special NEtworkscooveiiiicieieiereimsen s 231
Learning OBJECTIVES ..veeevvereiiieeesiers st 231

61 TNTEOAUCTION ©vvsveeerernsinannsssrasseseeeenttentatn e aansar s ar s nn st s r e na e st s vae et 231
6.2 Simulated Annealing Networkcoocoovnnnnusisniiii 231
6.3 Bolmzmann Machineoviiriieienieiie e e 233
6.3.1 ARCHITECIULE « o tvvvnsrs s ieseruesanesrenasrerarenrrrnaeaeaasasirtae i b annrnn e nnanes 234

6.3.2 ALGOHIthM L.eviveriueeirat e 234
6.3.2.1 Seming the Weights of the Networkovocviiiiiiicini 234

6.3.2.2 Testing Algonithim ..o ocoiieeereeeminnn s 235

6.4 Gaussian Machileveenvereriorreeenmrmsriran s saar et a gt 236

xiv

Contents

6.5 Cauchy Machineoooviiiiiiiiii i 237
6.6 Probabilistic Netural Vet .. .o.ienveiiiiieiii it 237
6.7 Cascade Correlation Networkc.oouirirtiioii i e 238
6.8 Cogmitron NETWOLI ..vvveiieiiree i 240
6.9 Neocognitron Networltooviiiiiiiiiistiniimniir i 241
6.10 Cellular Newral Betworl o ovoeeenrereenerntinsssnsresennrrssearn s asa st anse 242
6.11 Logicon Projection Network Modeloooviiiiiiiiiien e 243
6.12 Spario-Temporal Connectionist Neural Network ... 243
6.13 Oprical Neural Networks ..o e 245
6.13.1 Electro-Optical Multipliersooooiviiiiii i 245
6.13.2 Holographic Correlatorsovvveiiiriiiiiiiiiiniir e 246

6,14 Neuroprocessor CHIPSvurresieussransrnmnnmmmrme e btr s s 247
6.15 SUMMALY ...oveeeeioirruinreree e eiirarrre s s sas s accesn e aa b g e bt rnr s s s 249
G.16 Review QUESTIONS ..vvvvveeiriistirereriainrrsr s ssse e e s ra e n bt e 249
7. Introduction to Fuzzy Logic, Classical Sets and Fuzzy Sets ... 251
Learning Objectivesoevvtiimrmmmsssesraimrenii e s 251

7.1 Introduction to Fuzzy Logic ..ooveeeeiiiiii i ittt 251
7.2 Classical Sers (Crisp Sers) ..o coevmmunimrmmmiiee et e 255
7.2.1 Operations on Classical Setsoooiviiiii 256

2 5 O T Y T P ETETRTTET RS 257

7.2.1.2 LOEETSECTION 41tuerrnruenrnnenenneninsnrrannsnssnmesmanasasannssssaseanssons 257

7213 Complementcu.oeeeiiaaiiiiiiii i 257

7.2.1.4 Difference (SUBTFACHON] ...\t ivaeaeeaec oo irirerrrrraraarnae e raanians 258

7.22 DProperties of Classical Sersovvmmoeririiii 258

7.2.3 Funcrion Mapping of Classical Sets ... 259

7.3 FUZZp SEES «oeeinn it e 260
7.3.1 PFuzzy Set OPerationsouvvivieieieniniermcn et 261
. O T 1T PR PP 261

7.3.1.2 INTEISEOTEOIL 4oeneenemnnennnennnetnsnnsansanesrnreas s saatas e st saasaasases 261

7.3.1.3 Complementciiiiimniiiiii e 262

7.3.1.4 More operations on Fuzzy Setscoooiiiiini 262

7.3.2 Properties of Fuzzy Setsoooiiimiiimii 263
T 1 YT APPSR PPN T 264
7.5 Solved Problems «.v.evu vttt 264
7.6 Review QUESTIONS ...uvvieeeieiiiiiii et ariite e e e s an e e caan e 270
7.7 Exercise Problemso 271
8. Classical Relations and Fuzzy Relationsccocooiiiiiiiiiiiiiiiiiniieeneees 273
Learning ObJECTIVESoiiiiiii it 273

I (11 (e T 1 PP PP PPE TSSO 273
8.2 Cartesian Product of Refationovveeveeeornc i 273
8.3 Classical Relationicvuiiiiiii i veien e veee v ersr e ettt s brrrnt s vas s aa b eanaen 274
$.3.1 Cardinality of Classtcal Relation «....oooiviveiiiiii e 276

8.3.2 Operations on Classical Relations ... F AT, 276

83.3 Propertiesof Crisp Refationsoooioiii i v 277

8.3.4 Composition of Classical Refationsooooiiviiiiiiiin i 277

i

Contenls

XV

84 Fuzzy Relations ..o.oooonviinins PR 279
’ 8.4.1 Cardinality of Fuzzy Relations e eeerarae e et e eer et e e 281
8.42 Operations on Fuzzy Relationscoovvinmimiiimisnr e 281

8.4.3 Properties of Fuzzy Relations ... covmmemniinniniimn e 282

84.4 Fuzzy Compositioncoeeeeeee. PP PPPPPR PR 282

8.5 Tolerance and Equivalence Relationsccooviioimininnmiiinine 283
8.5.1 Classical Equivalence Relationoeeevniiiiiiinnnnni s 284

8.5.2 Classical Tolerance Relationuuueeermmmmmmmiiuennini i, 285

8.5.3 Fuziy Equivalence Relationcoooooiovivrnresiinenrinininnis e 285

8.5.4 Fuzzy Tolerance Relation DT P SRR PP 286

8.6 Noninteractive Fuzzy SEIS ..oooovirmrrrrrnr s e 286
B7 SUMIMALY teoueeeersurmrarrrrresas s stses s s e e s aasr et e mm s s s s b 286
8.8 Solved PrODIEIIS «oovvvseeroeivarreneserias s rrsrr e e rr et 286
8.9 Review QUESTIONS «.vvvsvesiueeirssssssessre s eres i a bbb s 292
8.0 Exercise PrOBIEIMS «eenneenssasreuremnseamriasssimneraa s sa st 293
9, Membership FURCHODSovvovrieiiereerersiaresiiiri s b 295
Learning ObJECHVES .uvev.veverssssssrarssrossssss s brs st 295

D1 THUEOAUCKION . evrrreresnsseeeetecensuanssersrnrsresarassr st s s e s s aa s st asar e s s 295
9.2 Features bf the Membership Functionsooveeveiiiiinn s e eaeanana 295
0.3 FUzZifICAION «ovrnevvrnrnerssressneeeeces ettt 298
9.4 Methods of Membership Value ASSIENMERTS «.ocoemeimmmniirrrse 298
R B T e P URTT PP PP DRSSP L PR P PP PP PP PP TTTTRPPRPPY 299

R 11 = T S RCRLTTIE 299

943 Rank Orderingoooveviriimeeseenenis s 301

944 Angular FUzzy SEtsviiereieimnnis s 301

945 Neura] NeTWorKsevvreenuiiereiiiase s rrrrriss s . 302

94.6 Generic Algorithimsooiiir i 304

9,47 Inducrion REISOMIIE «..eoeeemeesrrrreres i e e 304

9.5 SUIMAMLEY «oeeteinnnrennraressssr s rbesimtrae e e e e s sa s E R E LT s a e s 305
0.6 Sobved PrOBLems oooeeeiieeiiiiin i rrsr et 305
07 Review QUESTIONS «veerutiriismreasamees s errrrases s s st b bt 309
9.8 Exercise Problemsoooverriininiiiierrr i 309
10, DIEFUZZHRCAtION o ovnnnnneerreeeeeeeantrmaaeeseeaasaa e imman b ra e e te s s s s e m e e n et g 311
Learning OBJEctivescvveriueeseireisiiimi sttt an

10,1 TELEEOQLICTON - eeemeeeemeesanss e eere s aebasesaa e eaeemeeman e m e aaE s a e dn e s na e e 311
10.2 Lambda-Cuts for Fuzzy Sets (Alpha-Cuts) ..oovveriiiiniiinnmnii e 311
10.3 Lambda-Cuts for Fuzzy Relations ... 313
104 Defuzzification Methods ..ovvererieiorer it e 313
10.4.1 Max-Membership PARCIPle ...ooiiivnmenrnnmmtemiin 315
10.4.2 Centroid Method ...veevievirvnienenne SRRSO 315
10.4.3 Weighted Average Methodoovinimiinn 316
1044 Mean-Max Membership ..voeoriinnnmnrn 317
10.4.5 CEnrer OF SUITIS +vvvvvrvrrreererrsnnssnnnnssnaanaaaassssssss st nnann s inactcnaaanrsses 317
10.4.6 Center of LATEESt ATELooiriorireesincieensisrrbssen st s 317
10.4.7 First of Maxima (Last of Maxima)ceeunerreemavannnnimm e 318

xvi

Contents Contants xvil
105 SUMIMATY L\ evreteiin ittt ee e st ie et e s en s een e e ennrenabeaesssssbentars . 320 12.12 Exercise Problems .ovveiviirerierenininnssienneesies e rerhrer i rarreente e e et 361
10.6 Solved Problems «covveuiiein e iiicniar e e e v ea st ra e v aea e 320 ; . . . 363
. Fuzzy Decision Makingc.cooviiiiipiinn s
e ———————————— 5 Ry Deon g A —————
10.8 Exercise Problemsocovoiiiii 327 131 Introduction....................................'_..._ .. 363
11. Puzzy Anthmetic and Fuzzy Measuresc.ccevinn, e 329 132 Individual Decision MaKingeeelonruernenemiinnis i 364
Learning ObBJEctivescoeeniiiiiiiiiie i e e e eeae 329 13.3 Muiperson Decision Makingcoooeiiiiiiinininnisesni e 364
8 B s L0 1 R PP O 329 134 Multiobjective Decision Making:voovvriveviiiinn e e 365
11.2 Fuzzy AfIMENC . uuee e ceee it e e e e e e e e e e e e 329 ? 13.5 Mulriartribute Decision Makingvevviiiiiimnenie i 366
11.2.1 Interval Analysis of Uncertain Valuesocoovveiiiiiieiinn e 329 13.6 Fuzzy Bayesian Decision MaKing ..%......ciiniiimmin i, 368
11.2.2 Fuzzy NUmbersccvvviiiiiiiiiiiiii s 332 13.7 SUMUMATY ©oeeuevrnnnrernrrrereestommnnnnreetees s siassbesisisasssssinrrrerarnesss s bbbrssiasaans 371
11.2.3 Fuzzy Ordering .ooeeeiee it s s re s e e s e s aan 333 13.8 Review (UESLIONS 1. ovuvirnrrnrrenicrresinrmamiretiiriiiiinetirersressesicrerarsaae e tiasnnns 371
1124 Fuzzy VECIOES .ovvviiiiiiiiiiiiiiiiiiiiiiioiniisrs e s e resssannnsssssananssssnnnnseaes 335 13.9 Exercise PrOBIEmS «ovuvviiiereinniioirmiren sttt aera b e r e n s s e ne e 371
113 Extension Principle ooooovininniiniiimsimsnn i, PR 336 4 F ; 1 Svst i, 373
114 Fuzzy Measures ..uuvivusiireuieeenenieoiisineeeieretnreneeesieresinnaennss et 337 14. mﬁi‘ﬁlgg)‘;ﬁzﬂvr B oo 373
114.1 Belief and Plausibility Measures vovecoovoovevevnnioniinnimiiissssnii 338 " 14.1 Introduct.ion] .. 373
11.4.2 Probability Measuresccoovvrrreriiimiiiiiiiiiiiieiiieencnscnenssnasasaaaaaeens 340) S T 374
4.3 Possibility and ity M 40 14.2 Conrol System DSl «veeveeoiiiiiiineoiiee s iiiaas e
1143 Tossibilicy and Necesslty Meastres -ovvvvconnviinssnssssnrennicsssssnsnnnccennnss 3 14:3 Architecture and Operation of FLC SyStem ...vvveeueeeciiennisercronnnnnsieseee e, 375
11.5 Measures of FUZZIMESS ...ou.erniiiieeaiet e e e ettt e e es e e e me e e et e 342 RO Qeee Mo de 377
11.6 1 al 42 14.4 FLC System Models «ouuvviimmnnniiiiniiiniis s crann i
6 Fuzzy Integrals ..o e 3 14.5 AppHCAtion OF FLC SYSCEMS +cc.vvveveovssenesmrsessrssssararsenssssssessssssensessasessssecees 377
T1.7 SUMMIATY 1etreniiiie et it e 33 A Sumimare 383
14,6 SUMIMAY «.oiuvvniiiiinceeisitirss e es s s s s e st s s er et s as s e rr et a s enes
11.8 Solved Problems ...vvvviveeiiiii e e 343 o . 383
i ; - T4.7 Review QUESTIONS ...ovvvevrnrirrereesecriariennrenssets i iassaar e era e aaans
T 34 14,8 EXRCISE PLOBIEMS +vvrovvvvvvveeroseesssessrsesomsessnssssonessssssasnsssscsessssssieseennens 383
11.10 Exercise Problems ovvivv i e e e e 346 385
12. Fuzzy Rule Base and Approximate REasomngco.ovovveroreevereeseseessnarenes 347 15. Genetic Al'gnrldu.n T 3%
i iecti Learning ObJectives «... cvvviiiriiiiie it s
Learning ObJectives .iovuutiiieet i cinee e e e e e ee s e et e e e e e e 347 - 385
12.1 Introduction 347 15,1 IRETOBUCTION .. evisiuiensrre e eteeteen i esaaessee e e eeaee s tasan et e ane i b aan e b bttt e rea s 2%
.1 Introduction RSTCRT LI IR TIPS 15.1.1 What are Genetic AIGORTAIS -........rvvvverroosossesesssssreseesseessseesees
};2 gl’uth Xalue.s and Tables in PU.ZZy LOglC '' aig . 15.1.2 Why Genetic A_lgorithms? ... 386
.3 Fuzzy Iroposmons .. 3 . 152 Biological Background __ 386
12,4 Formation of RUles ..ovvvvvvveeeenriiiniii e 349 15,20 The Call oo 386
12.5 Decomposition of Rules (Compound Rules)ccooviiiiiiiiiiiniiiinnneenennnns 350 e m T T ... 5386
: 15.2.2 ChEOMOSOIMIES 1\ 1vreenrnrnenrnencrcarraearaisraserastiaiartitieeaass
126 Aggregation of Fuzzy Rulies ..., 352 e 387
: . . 15.2.3 GEREHCS vvvuernernircierneeeeeestrsir ittt s rarar e r i aar s
12.7 Fuzzy Reasoning (Approximare Reasoning)o..oovvvvvvviiiiniiiniiiiinii i, 352 Il + e e e e e 388
: ; 15.2.4 ReprodUuctionvevvvveesiieerrrmmriiiin e
12.7.1 Caregorical Reasoninguuvueniiiiiiiiiiisiie e eveeereracsre s e e e eeeennnns 353 TOIL oo s 390
2.7.2 Qualicar i 15.2.5 Natural Selection .uuevemivieeurireerensciemarrrnarmnaeereeaianie e
127 Q]]] Reaso!_lmg --- 354 o 15.3 Traditional Optimization and Search Techniquesccooiivinniiinniiineens 390
12.7.3 Syl ogistic Reasomngl .. 354 15.3.1 Gradient-Based Local Optimization Method v....veversrereerirrseerecsnsrnsens 390
12.7.4 Dispositional Reasoningcoooiiit v vvveeeiuierunneineneninininnininnnrnns - e 392
15.3.2 Random Search ..vvvvveiiiiiiinier e e
12.8 Fuzzy Inference Systems (FIS)ovvvooicnnicn i, 353 15.3.3 Stochastic Hill CUIBIAG ...vvvvsevseeersescessessenssmnsesecssnsessossonmsssssssssons 392
12.8.1 Construction and Working Principle 0f FISoeioiviiiiriiiriiiienieeiiinnns 355 15'3' 4 Simulated ANNEARNE «.vvvivesveeeee s ceereces i sis e 392
12.8.2 Methods of FISoovvromieiernriniessissese e sensssssccssessssnsnsnnns 355 " e ArCFicial TREEITEEMICE o orrreoeeoeeeseseeeesesesessesessessereeeeerenrerees 393
i 15.3.5 Symbolic Artificial Intelligence vv.ovvvueieriiiiiiii
12.8.2.1 Mamdani FIS ...coovvviiiiiiiiiiiiiii e rerae e seesea e 356 . o d Caarch SDACE - oo oot rra 394
i 15.4 Genetic Algorithm and Search Spaceo.vvviiiniiiiiii
12822 Takagi~Sugeno Fuzzy Model (TS Method) -....vvovvarvssnisnisinssnnann. 357 15.4.1 Search SPaceovvvivimiiimiiiii 394
i 12-?-1:2-3 C];;mpa-f'; on beoween Mamdani and Sugeno Method -....covvveco %8 15.4.2 Genetic Algorithms Worldcoooii 395
12.9 Overview of Fuzzy Expert System ..., 359 15.4,3 Evolution and OPEMIZAON -v...ev.versevesssessesesssessescesrsseessesamsmnemasoess 395
1210 SUMMATY ©oiieeei e e e r e pe e e peeeeeees 360

‘ 4. i d Genetic Algorithms ... 396
12,17 Review QUESTIONS ..rvecuuririiiiiientieiiiaiiiie i e e ssss e eeaeeeeteeetnnmaaaaeereeesernnanns 360 15.4.4 Evolurion and Genetic Algorithms

xviii

Contents

15.5 Genetic Algorithm vs. Traditional Algorithms ..o 397
15.6 Basic Terminologies in Genetic Algorithmoccon 398
15.6.1 Individuals ...ovvnreniiin i e 398
15.6.2 GREMES 1evvvivnsettaa s etis s rasae e e rrn e e e et e et a e e e e a e e e i e rasaaaaan 399
I - T U U 399
15.6.4 POPUIATIONS 1. ovvvintiiurreiiiiii e e e e e 400

15.7 SImple GA .ooviiiiiini i et e 401
15.8 General Genetic Algorithmcoiiieiiiiiin e 402
15.9 Operators in Genetic Algorithm O PPNt 404
15.9.1 Encoding .vvecviviiiiriiii it er e e e 405
15.9.1.1 Binary Encodingooovivivniiiiiniiiiiiii e 405

15.9.1.2 Ocral Bacodingooveeiiimiiieiiin e 405

15.9.1.3 Hexadecimal Encodingocoooiiiiiiiiiniiecrs 406

15.9.1.4 Permuration Encoding (Real Number Codmg) 406

15.9.1.5 Value Encodingoooreiiiiiiiiiiindiiiiiii i 406

15.9.1.6 Tree Encoding ...ccuueiiiiiniiiiiniin i e e 407

15.9.2 SeleCtiOn ..veniniriiesieitie et ra e 407
15.9.2.1 Roulette Wheel Selectionccovvviiiiiiiiiiiniicviicire e 408

15.9.2.2 Random Selectionovuuimmiiiimmnneiiie e ‘408

15.9.2.3 Rank Selectioncoovrvrvenrinniiiiei s e v e 408

15.9.2.4 Tourpament Selectionc.ovvviiiiiiiiii i s 409

15.9.2.5 Boltzmann Selectioncvvuvreiiiinrriniiin i e 409

15.9.2.6 Srachastic Universal Sampling ... 410

15.9.3 Crossover {Recombination)oooeiviiiiiiiiiiie e rer s arenaes 410
15.9.3.1 Single-Point Crossoverccuiiiiiueeiiiiniiiiinic e, 411

15.9.3.2 Two-Point CrosSovEroooviiiiiriii i 411

15.9.3.3 Multipoint Crossover (M-Point Crossover)oviviiiiiinn. 412

15.9.3.4 Uniform Crossoverooiiiimariiiiicieiine et erae e eaens 412

15.9.3.5 Three-Parent CrossoVETocvuceeriiiitieiemeeaaaeineser e ee s raaee 412

15.9.3.6 Crossover with Reduced Surrogatecooccoeeinii, 413

15.9.3.7 Shuffle Crossover - .oeit i i e e 413

15.9.3.8 Precedence Preservative Crossoverc..o...ioveiviiiinceienneicininenees 413

15.9.3.9 Ordered Crossaveroovvtieinniiiiecniei it neessaanin e 413

15.9.3.10 Partially Matched Crossoveroccciriuiiiniiee it ierineiienns 414

13.9.3.11 Crossover Probablhty .. 415

1594 MUTATON Lootiiiiniiiiiiiieis e e e e eeet e e e e r e e rsasae e et nrraeeaaeeees 415
15.9.4.1 ELPPING ..cvvvvvnt oo iniiriree e e et e e 415

15.9.4.2 Inerchangingceoemmieeeiiiiiineiiiieeieeiiiine et err e e e e en s 415

159,43 REVEISINE -.orvvneieeitia i ieit i e e it eeeei e e e e areeeenrnn e e e aca e eeran 416

15.9.4.4 Mutation Probabilityoooooeiii i 416

15.10 Stopping Condirion for Genertic Algorithm Flowocociiniiiiiiiecre e 416
15.10.1 Best Individinal ... e e 417
15.10.2 Worst individual ... 417
15.1035um of FIENESS ..o oiviiiicii i ettt e 417
15.10.4 Median FIitness ..o 417

15.11 Constraints in Genetic Algorithm ... 417

Contents Xix
| 15.12 Problem Solving Using Genetic A.lgonthm .. poeenr 418
‘ 15.12.1 Maximizing 2 Functioncooeeinieeens P P 418
15.13 The Schema THeOEm ..o ierreererensinssnaasarn et r et
15.13.1 The Optimal Allocation of Tnals !
15.13.2 Implicic Parallelismoovvvinite .
15.14 Classification of Generic Algorichm,..... U U .
15.14.1 Messy Genetic Algorithmscoeiininiininns PRIV
3 15.14.2 Adaptive Generic Algorithmsooovirienirmniins it
f 15.14.2.1 Adaptive Probabilities of Crossover and Mutationovvoevveiinninens 427
: 15.14.2.2 Design of Adaptive pe and Py «ovovevveniiiiinne i 428
i 15.14.2.3 Practical Considerations.and Choice of Values for &1, &2, 3 and &4 429
| 15.14.3 Hybrid Genetic Algorithmsooiiieiimmii e 430
“ 15.14.4 Parallel Genetic Algorithm «...ooovivviiiinn et —————— 432
| 15.14.4.1 Global ParallelizZationcevvviiemvomimnnin i 433
v 15.14.4.2 Classification of Parallel GAs ... voovrreeimeenrnncnniimi e 434
15.14.4.3 Coarse-Grained PGAs — The Island Modeliciinnniinnn 440
15.14.5 Independent Sampling Genetic Algorithm (IBGA) voivvieiiiniiinii 441
15.14.5.1 Comparison of ISGA With PGA «...oiiiiiiiinnnns 442
15.14.5.2 Components OFISGAS vorveee i eeriereirreee s ebb b eae e s s s s 442
15.14.6 Real-Coded Genetic Algorithms ..uveevrveeieiiceanmmmm e, ... 444
15.14.6.1 Crossover Operators for Real-Coded GAsooooviinniiiiinmninnn, 444
15.14.6.2 Muration Operarors for Real-Coded GAsoooiiiiiinminiiinnniienne 445
15.15 Holland Classifier SYSEems «....oovvvvierrrrresnurcmmcnmnsennnseassanssnnassi s 445
; 15.15.1 The Production SYStem ...o..oocvvvrermreerieeanirrrssirs s 445
; 15.15.2 The Bucket Brigade Algorithmeevmmiiiiiiiiiii e 446
15,15.3 Rule GEMEIATION ©evunvrtiiersrenseissssnnsamessrsnrs it s tas s mbaasss s iar e sssaanns 448
15,16 Genetic PIOGRamMIngoovevvvvsssmnmcecrnemnssiis s e 449
; 15.16.1 Working of Genetic Programmingcooovisimmminmin e 450
15.16.2 Characteristics of Genetic Programmingccoooiiim i, 453
15.16,2.1 Human-Comperitiveocuriiviiiiiesinrsssinnninnnnn s 453
15.16.2.2 High-Reurnovvmmuicninnininnnnnss et 453
15.16.2.3 ROULINE cvvveinreinirionnns TP 454
. 15.16.2.4 Machine Intelligenceoooooiveiniiennn e 454
i 15.16.3 Data REPrESENIATION .. .vvvrreresssrressamirnnresssimbbbassaasbbns s i irasses 455
. 15.16.3.1 Crossing PrOBIamSoovieieimimrciianeceimnnin i s 458
' 15.16.3.2 Mutaring PrOramsoovmrrrrsiinnnroisiinns s 460
15.16.3.3 The Fitness Functionc..ovienvmmeiienn e 460
15.17 Advantages and Limirations of Genetic Algorithm ..o 461
15.18 Applications of Genetic Algorithmoccooriiiii 462
1519 SLITMIATY L00vvtttiaen s reernesssssrrebrses bbbt 463
15,20 Review QUESTIONS «-«xuevrrrrrrrrmmnsresrrsssaiammasasinees st s i s bbb s s bt 464
15.21 Extercise Problems .o..oooniieiierierisia et e 464
16. Hybrid Soft Computing Techfiquescocooimiiirmmnmin i 465
Learning OBJECHVESouieiovreririeree e n s s it s e 465
161 TRITOQUCTION «erteeoeemeseaeuntren e aaaescmn v ras s rra e s ra s s n T s g bt e s b e e s at e e bes 465
|
-—;‘&
- R _ ,

Contents

16.2 Neuro-Fuzzy Hybrid Systemscovevvviniiiiiiiiiiic e e 466
16.2.1 Comparison of Fuzzy Systems with Neural Networksvvenievieniiiiniiiioennne. 466
16.2.2 Characteristics of Neuro-Fuzzy Hybridsocooeviiiiiin i 467
16.2,3 Classifications of Neuro-Fuzzy Hybrid Systemsccooiiviiviiiniriiinninnnnnn. 468
16.2.3.1 Cooperative Neural Fuzzy Systemsovvveeenieiuiininininnrrannninn, 468

16.2.3.2 General Neuro-Fuzzy Hybrid Systems (General NFHS) 468

16 2.4 Adaptive Neuro-Fuzzy Inference System (ANFIS) in MATLABccccovemnnnens 470

16.3

16.24.1 FIS Structure and Parameter AdjUSEment . ..uevevueeervrrniniecunrennnes 470
16.2.4.2 Constraints of ANFIS '

16245 The ANEIS Bdtor GUL -~

6.2.4.4 Data Formalities and the ANFIS Editor GUIoivvinieinniinnnennnns 472

16.2.4.5 More on ANFIS Editor GULcoiiiiiiiiiineiniiiin e, 472
Genetic Neuro-Hybrid Systems PRI 476
16.3.1 Properties of Genetic Neuro-Hybrid SYStemsovcerurivirsiesirerecencresinnns 476
16.3.2 Genetic Algorithm Based Back-Propagation Network (BPN)vvvviviiiiinnnen, 476
16.3.2.1 Coding e E L et e e e 477
16.3.2.2 Weight Extractionoivvviiciimmmiiii i e 477
16.3.2.3 Fitness FUNCHON «.vvvier i vnse st ee e e nan e 478
16.3.2.4 Repreduction of OFpring .oovvveeeetiviviviin e 479

16.3.2.5 CONVEIEENCE 1..uuviiiiiiiis e e ccnainenns 479
16.3.3 Advantages of Neuro-Genetic Hybrids

... 4

164 Generic Fuzzy Hybrid and Fuzzy Genetic Hybrid Systemsooovuivviniiiiiiiicninninnnn, 4;3
16.4.1 Genetic Fuzzy Rule Based Systems (GFRBSs)ooovvvviiiiiiciiiiininiin e 480
16.4.1.1 Genetic Tuning Process «....cooivvveiiiiiinen oo eaaes 481

16.4.1.2 Genetic Learning of Rule Basesccoiiiiimmiininin, 482

16.4.1.3 Genetic Learning of Knowledge Basecceuvvnnnrenicriivininnininennn, 483

16.4.2 Advanrages of Genetic Fuzzy Hybrids ..o, 483

16.5 Simplified Fuzzy ARTMAR ...t e e e 483
16.5.1 Supervised ARTMAP SYstemoovuiiiiiiiniiiiiniii s 484
16.5.2 Comparison of ARTMAP with BPN ..., 484

16.6 SUMNIMIALY 111 iiinitiiiiiaiir e et e sttt e e e e s e e e e et e e e e et e e e e et e e e eae et annees 485
16.7 Solved Problems using MATLABuuviiiiiiiie it e eee e e e raeenes 485
R T T P 509
16.9 Exercise Problems ..ot 509
17. Applications of Soft Computingcccoooo it iviiinecci e 511
Learning OBJECTIVES L.ovuiivuneiiiiiiii i e ea e e err e s b e e 511

L T T PPN 511

17.2 A Fusion Approach of Multispectral Images with SAR (Synthetic Aperure Radar)

Image for Flood Area Analysisooiciiimiiiiiriiic e 511
17.2.1 Tmage Fusion ... e 513
17.2.2° Neural Network Classificationoovvievirnriiniieiniieriasseninien e 513
17.2.3 Merhodology and Resultscociviiiiiiiiii i 514
17.23.1 Method wooeeiniiii i e e 514

17.23.2 Results ovoeieieiimnmiaiiier s s e 514

17.3 Optimization of Traveling Salesman Problem using Genetic Algorithm Approach 515

-

Contents

174

17.5

17.6

17.3.1
17.3.2
17.3.3

Genetic Algorithms0 PP
SChemMAta +ovvenrenreerseernneerrrnsnesssivinninnarianaraseens Leeerreaeeeneeen e anan
Problem Representation

17.34 Reproductive Algorithms
17.3.5 Mutatiori Methods
17.3.6 RESUIS cooivvnnirmneerinr i eernneeeTarrirni s aas s asras st s r b s e st b
Genetic Algorithm-Based Internet Search Ted'mlque ... 519
17.4.1 Genetic Algorithms and IREINET ..oevriiiiii s 521
17.4.2 First Issue: Representarion of Genomesooiouimmimcunsrnnniisnnnsmnsssens 521
17.4.2.1 String REPreSEnATIoN «eeeevrrrsscrreaniiiiiirnnnrrrsssinnn s 521
17.4.2.2 Array of String RepIesentationoociiiuiemeniiiinmnincnnnssiinne 522
17.4.23 Numerical Representationcocvviviv i 522
17.4.3 Second Issue: Definition of the Crossover Operarorcco.ovvennriiinnriinensen 523
174.3.1 Classical CIOSSOVET vevuureasusrumsuiierssennnmreariniinasasassrrrarasinian 523
17.4.3.2 DParent CLOSSOVET ...oevunieranssresecrmararassasassrnsssnrassnnsssanasmtons 523
17.4.3.3 Link CrOSSOVEL vuvveeeresncnnemnrmnssrmrearssrsurrasnsmassnsnass PO 523
17.4.3.4 Overlapping Linksoooiiiiounmiimmmmnimcassnsas e sssens 523
17.4.3.5 Link Pre-Bvaluation ..c.c.veeeeeeriviiiimncnnminnisninsas st 524
17.4.4 Third Issue: Selection of the Degree of Crossoverooovivuurniiiinermeeienn 524
17.4.4.1 Limited CIOSSOVET ...univtiiansistiruiraiisssrrrns s sbinna s sissinsseats 524
17.4.4.2 Unlimited Crossovero..oviiiriiiiiiniimiinniermsnnnn e 524
17.4.5 Fourth Issue: Definition of the Murtation Operatoroooviiiorieeeninnie: 525
17.4.5.1 Generational MUBation -........cieeioimminmiiiinncrsser s 526
17.4.5.2 Selective MUIAtON —ovvvennrreiiiiinnieire s sra e 526
17.4.6 Fifth Jssue: Definition of the Fitness Functionoiiiiiinmmnnss 527
17.4.6.1 Simple Keyword Evaluationccccooiiiniinnin 527
174.6.2 Jaceards SCOTE «o..iiviiioiiiiiii it 527
17.4.63 Link Evaliationccoceeioomiriiiiociiin e e e 529
17.4.7 Sixth Issue: Generation of the Qutpur Set ...oivieiieniiiiiiinens 529
17.4.7.1 Interacrive GENETAUON . .ovvesuemeuemrnrmcarin i nra i seea s 529
17.4.7.2 POSt-GENEIAION «.vruemeniieitiain i s s st 529
Soft Computing Based Hybrid Fuzzy Controllersooconuiiiminininnneeees 529
17.5.1 Neuro-FUzzy SYSIEM .uvvvunrsieemmrrmnnirrnniiisssiecn s 530
17.5.2 Real-Time Adaptive Control of a Direct Drive MOtorcovvvviiininnnenenes 530
17.5.3 GA-Fuzzy Systems for Control of Flexible Robotsocoiiniiniinnnnens 530
17.5.3.1 Application to Flexible Robor Controlcocvoviiviinmmmmomsniienn 531
17.5.4 GP-Fuzzy Hierarchical Behavior Controlooiiiiiiiiiiiniiniiieeeeees 532
17.5.5 GP-Fuzzy APProach «.occvuriveenivioniinniniie s 533
Soft Compuring Based Rocket Engine Control ... irvniriniesinimminmnnee 534
17.6.1 Bayesian Belief Networkscooviimmmrimicni s 535
17.6.2 Fuzzy Logic Control coeuriiiinn oot i 536
17.6.3 Software Engineering in Marshall’s Flight Software Groupccoviomiinecnnen 537
17.64 Experimental Apparatus and Faciliry Turbine Technologies SR-30 Engine 537
17.6.5 System MOdifICationsooooeiiiinnniiiii e 538
17.6.6 Fuel-Flow Rate Measurement Systemovvveniiiiiiimiiirre e 538
17.6.7 Exit Conditions MOMIIOEDE ..vuvmsesssssrearecaminiissssrnrmssnnnss e 538

Contents

17.7 Summary
17.8 Review Questidns

18. Soft Computing Techniques Using C and C++

18.1 Introduction
18.2 Neural Nerwork Implementarion
[8.2.1 Perceptron Neowork
18.2.2 Adaline Nerwork
18.2.3 Madaline Nerwork for XOR Funexion
18.2.4 Back Propagation Nerwork for XOR Function using Bipolar Inputs and

Binary Targers ..ve.ceeeiii i e

18.2.5 Kohonen Self-Organizing Feature Map
18.2.6 ART | Nerwork with Nine Input Units and Two Cluster Units
18.2.7 ART 1 Nerwork to Cluster Four Vectors
18.2.8 Full Counterpropagation Nerwork
18.3 Fuzzy Logic Implementation
18.3.1 Implement the Various Primitive Operations of Classical Sets
18.3.2 'To Verify Various Laws Associated with Classical Sets
18.3.3 To Pedform Various Primitive Operations on Fuzzy Sets with
Dynamic Components

18.3.4 To Verify the Various Laws Associated with Fuzzy Ser
18.3.5 To Perform Cartesian Product Over Two Given Fuzzy Sets
18.3.6 To Petform Max-Min Compesition of Two Matrices Obuained from
Cartesian Product

18.3.7 To Perform Max-Product Composition of Two Matrices Obrained from

Cartesian Productcooovviiiiiiii e e et rav————-

18.4 Genetic Algorithm Implementacion
18.4.1 To Maximize F(x,,x) = 4% + 3x
18.4.2 To Minimize a Function F(x) = &
18.4.3 Traveling Salesinan Problem (TSP)
18.4.4 Prisoner’s Dilemma
18.4.5 Quadratic Equation Solving

18.5 Summary

18.6 Exercise Problems

19. MATLAB Environment for Soft Computing Techniques
Learning Objecrives
19.1 Introduction :

19.2 Gerring Started with MATLAB
19.2.1 Matrices and Vectors

19.3 Introduction to Simulink

19.4 MATLAB Neural Nerwork Toolbox
19.4.1 Creating a Custom Neural Nerwork
19.4.2 Commands in Néural Nerwork Toolbox

17.9 Exercise Problems «..o.ooovveeeininin, PP PRTPPIN

Learning ObJEctives .¢.........iuetiiiiie et crii s ira e rre s r e an e

...

19.4.3 Neural Nerwork Graphical User Interface Toolboxccoooeriiiiiiiiiniiinennnns,

........ 539

........ 541

........ 579

—

Contents ‘ xxdii
19.5 Fuzzy Logic MATLAB Toolbox TR U TIPSR 624
19.5.1 Commands in Fuzzy Logic Toolbox ...ovteeiinnnimmnrrn e saesees 625
19.5.2 Simulink Blocks in Fuzzy Logic Toolbox ...ovvvoiininrnmnsinnisssseaisinesees 626
19.5.3 Fuzzy Logic GUI Toolbox Lo iaressinrannsasearnaeaatasrnryans e 628
19.6 Generic Algorithm MATLAB Toolbox .. :
19.6.1 MATLAB Generic Algorithm Commiandsoooveiiiniiimninerinnmnneens 632
19.6.2 Genetic Algorithm Graphical User Interfaceovooiammimmnnnnearimnineree 633
19.7 Neural Nerwork MATLAB Source Codes .ooooovmrrriannmninnnniirnnnne s iinierseens 639
19.8 Fuzzy Logic MATLAB Source Codes ...ocovevircvimsimimmsssinsi s 669
19.9 Genetic Algorithm MATLAB Soutge Codes ocovvorriinmiiinnssrrsr s ‘*1653{1)
19,10 SUMITIALY <. vveeceueerneeaansnnas s essanssmar s sar s s S s Enntnss et 690,
19.11 Extercise PrOBlEmSoveveeuerrermssranenrisresaris s ns st
BADHOGEAPHY ... vseeectesocemrr e (;g;
Sample QUEStion PAPEr 1eueueremsersssmssii s o
Sample QUEStOn PAPEE 2coseeuisirnmessts st s il
Sample Question Paper 3ccooeecnnne L 71-4
Sample Question PAPer 4 ... cciremmiemmsmmsssar s s 14
Sample Question Paper 5coovcoerminmis s 7
1o PP PP EEETP PR PP PP PP P PP PP LT EL L L L L LR T L L 718

S,
wa b
a%

Introduction

Learning Chjectives

+ Scope of soft computing, * An overview of fuzzy logic,
* Various components under soft computing. * A note on genetic algorichm.
* Description on artificial neural perworks * The theory of hybrid sysrems.

with its advantages and applications.

L1.1 Neural-Networks

A neural nerwork is a processing device, eicher an algorithm or an actual hardware, whose design was
inspired by the design and functioning of animal brains and components thereof. The computing world
has a lot to gain from neural nerworks, also known as areificial neural networks or neural net. The neu-

ral networks have the abiliu‘_lga_m_bpcxampie_whlch makes them very flexible and powerfil:
newral networks, there is no need o devise an algorichm to_perform a specific wask; ‘th’;tr‘lrth'e'fé"xf no

need to understand the internal mechanisms of that task. These networks arc also well suited ToF Tl
time systenis because of their fast response and computational times which are because of their parallel
architecrure.

Before discussing artificial neural newworks, lec us understand how the human brain works, The human
brain is an amazing processor. Its exact workings are stll a mystery. The most basic element of the
human brain is a specific type of cell, known as neuron, which doesn’t regenerace. Because neurons aren’t
slowly replaced, it is assumed char they provide us with our abilities to remember, think and apply pre-
vious experiences to our every accion. The human brain comprises about 100 billion nearons. Each
neuron can connect with up to 200,000 other neurons, although 1,000—10,000 interconnections are
typical.

The .power of the human mind comes from the sheer numbers of neurons and their multiple
interconnections. It also comes from genetic programming and learning. There are over 100 different
classes of newrons, The individual neurons are complicated. They have a myriad of parts, subsystems
and control mechanisms. They convey information via a host of electrochemical pathways. Together
these neurens and their connections form a pracess which is not binary, not suble, and nor syn-
chronous. In shory, it is nothing like the carrently available electronic computers, or even arificial neural
networks.

2 Intreduction

I 1.1.1 Artificial Neural Network: Definition

An artificial neural necwork (ANN)} may be defined as an information-processing model that is inspired by
the way biological nervous systems, such as the brain, process information. This model tri€s to replicate only
the most basic functions of thz brain, The key element of ANN is the novel structure of its information
processing system. An ANN is composed of a large number of highly interconnected processing elements
(neurons) working in unison to solve specific problems.

Artificial neural necworks, like people, learn by example. An ANN is conftgured for 2 specific application,
such as pattern recognition or dara classification through a learning process. In biological systems, learning
involves adjustments to the synaptic connections that exist beoween the neurons, ANNs undergo a similar
change thar occurs when the concepr on which they are builc leaves the academic environment and is thrown
into the harsher world of users who simply want to get a job done on computers accurately all the time.
Many neural networks now being designed are staristically quite accurate, buc they sl leave their users with
a bad taste as they falter when it comes to solving problems accurarely. They might be 85—90% accurate.
Unfortunarely, few applications tolerate that Jevel of error.

I 1.1.2 Advantages of Neural Networks

Neural networks, with their remarkable ability to derive meaning from complicared or imprecise data, could
be used ro extract parrerns and detece trends thar are too complex to be noticed by either humans or other
computer techniques. A trained neural network could be thought of as an “expert” in a partcular cat-
egory of information it has been given to analyze. This experc could be used to provide projections in

new sitwarions of interest and answer “what i’ questions. Other advantages of working with an ANN
include:

L. Adaptive learning. An ANN is endowed with the ability to0 learn how to do rasks based on the dara given
for training or initial experience.

2. Self-organization: An ANN can create its own organization or representartion of che informarion it receives
during learning time.

3. Real-time operarion: ANN compurations may be carried out in parallel. Special hardware devices are being
designed and manufacrured to rake advantage of this capabilicy of ANNs.

4. Fault tolerance via redundant information coding Partial destruction of a neural network leads to the

corresponding, degradation of performance. However, sogg_m;mo_rk capabilizies.may. be rerained even

after major network damage.
,_/.-f»"'_—-._"'—_'_‘

Currently, neural nerworks can't funcrion as a user interface which translates spoken words into instructions
for a machine, but someday they would have chis skifl.. Then VCRs, home security systems, CD players, and
ward processors would simply be activated by voice. Touch screen and voice editing would replace the word
processors of today. Besides, spreadsheets and databases would be imparred such level of usability char would
be pleasing to everyone. But for now, neural networks are only entering the markerplace in niche areas where
their statistical accuracy is valuable.

Many of these niches indeed involve applications where answers provided by the software programs are not
accurate but vague, Loan approval is one such area. Financial institutions make more money if they succeed in
having the lowest bad loan rare. For these institutions, installing systems that are “90% accurate” in selecting
the genuine loan applicancs might be an improvement over their current selection process. Indeed, some banks
have proved that the failure rate on loans approved by neural networks is lower than those approved by their

1.2 Application Scope of Neural Networks 3

Computer sciance |
Artiligial intelligence

Mathematics
Neurchiology (app?:tlir:-.?xt?o:;eom

Cognitive
psychology

Neural networks

Physics
Dynamical systems
Statistical physics

Linguistics

Philosophy

Economics/finance Image..’Es?g:;Tzfggessing
tima series, dala minin !
(ing} Control thecry robolics

Figure 1-1 The multi-disciplinary point of view of neural nerworks.

best craditional methods. Also, some credit card companies are using neural nerworks in their application

. S
screening process. .

is newest method of looking into the future by analyzing past experiences has generated its own unique
set of problems. One such problem is to provide a reason behind a computer-generated answer, say, as to
why a particular loan application was denied. To explain how a network learned and why it recommends a
particular decision has been difficult. The inner workings of neural nerworks are “black boxes.” Some people
have even called the use of neural networks “voodoo enginecring.” To justify the decision-making process,
several neural network rool makers have provided programs thar explain which inpuc through which node
dominates the decision-making process. From this information, experts in the application may be able to infer
which data plays a major role in decision-making and its importance.

Apart from filling the niche areas, neural network’s work is also progressing in other more promising
application areas. The next section of this chapter goes through some of these areas and briefly desails
the current work. The objective is to make the reader aware of various possibilities where neural necworks
mighe offer solutions, such as language processing, character recognition, image compression, patrern
recognition, etc.

Neural nerworks can be viewed from a multi-disciplinary point of view as shown in Figure 1-1 ,/;
o

~

l 1.2 Application Scope of Neural Networks

The neural neeworks have good scope of being used in the following areas:

L. Air sraffic conrrol could be automared with the location, altitude, direction and speed of each radar blip
taken as input to the necwork. The outpur would be the air traffic controller’s instruction in response to
each blip.

2. Animal behavior, predatoriprey relationships and population cycles may be suitable for analysis by neural
nerworks.

3. Appraisal and valuation of properry, buildings, automobiles, machinery, etc. should be an easy task fora
neural network.

Iniroduction

11.

12.

13.

14,

15.
16.

17.
18.

19.

20,

21
22
23.
24.
25.

26.

- Beting on horse races, stock markets, sporting events, erc. could be based on neural nerwork

predictions.

- Criminal sentencing could be predicred using a large sample of crime details as input and the resulting

Seneences as eutput.

. Comples physical and chemical processes that may involve the interaction of numerous (possibly unknown)

mathemarical formulas could be modeled heuristically using a neural nerwork,

. Dasamining, cleaning and validation could beachieved by determining which records suspiciously diverge

from the pattern of their peers.

- Direct ma! advertisers could use neural nerwork analysis of their databases to decide which customers

should be aargeted, and avoid wasting money on unlikely targers.

. Etho parrerns {rom sonar, radar, seismic and magnetic instruments could be used to predict their vargets.
10.

Econometric modeling based on neural networks should be more realistic than older models based on
classical stacistics.

Emplayee hiring could be optimized if the neural neworks were able ro predict which job applicant would
show the best job performance.

Expert consultants could package their intuitive expercise into a neural nerwork ro automate their
services.

Fraud detection regarding credir cards, insurance or taxes could be automated using 4 neural network
analysis of past incidents.

Handwriting and typewriting could be recognized by imposing a grid over the writing, then each square
of the grid becomes an inpur to the neural necwork. This is called “Oprical Character Recognirion.”

Lnke waser levels could be predicted based upon precipitation parterns and river/dam fows.

Machinery control could be automared by capturing the actions of experienced machine operators into 2
neural network.

Medical diagnosis is an ideal applicacion for neural nerworks.

Medical research relies heavily on classical statistics to analyze research dara. Perhaps a neural newwork
should be included in the tesearcher’s ool kir.

Music comppsition has been wied using neural nerworks. The network is crained to recognize patterns in
the picch and tempo of certain music, and chen the nerwork writes its own music.

Photos and fingerprints could be recognized by imposing a fine grid over the photo. Each square of the
grid becomes an inpur to the neural nerwork.

Recipes and chemical formulations could be oprimized based on the predicred outcome of a formula change.
Retail inventories could be optimized by predicring demand based on past parcerns.

River water levels could be predicted based on upstream reports, and time and locarion of each reporr.
Scheduling of buses, airplanes and elevators could be optimized by predicting demand.

Staff scheduting requirements for restaurants, retail stores, police stations, banks, erc., could be predicred
based on the customer flow, day of week, paydays, holidays, weather, season, ecc.

Strategies for games, business and war can be caprured by analyzing the expert players response to given
stimuli. For example, a football coach must decide whether 1o kick, pass or run on the last down. The
inputs for this decision include score, vime, field locarion, yards to first down, etc.

L R

1.3 Fuzzy Logic 5

27. Traffic flows could be predicred so thar signal timing could be aptimized. The neural network could
recognize “a weekday morning rush hour during a school holiday” or “a typical winter Sunday morning.”

-28. Vaice recognition could be obrained by analyzing the audio oscilloscope pattern, much like a stock marker

graph. I
29. Weather prediction may be possible. Inputs would.include weather reports from sutrounding areas.

Output(s) would be the future weather in specific areas based on the input infotmation. Effects such as
ocean currents and jet streams could be included.

Today, ANN represents a major extension o computation. Different rypes of neural nerworks are available
for various applications. They perform operatichs akin o the human brain though to a limited extent. A rapid
increase is expected in our undetstanding of the ANNs leading to the improved network paradigms and a
host of application opportunities.

I 1.3 Fuzzy Logic

The concept of fuzzy logic (FL) was concetved by Lotfi Zadeh, a Professor at the University of California ac
Berkeley. An organized method for dealing with imprecise data is called fuzzy logic. The data are considered
as fuzzy sets.

Professor Zadeh presented FL not as a coatrol methodology but as a way of processing darta by
allowing partial ser membership rather than crisp ser membership or nonmembership. This approach
to set theory was not applied to conurol systems until the 1970s due to insufficient computer capabil-
ity. Also, earlier the systems were designed only o accepr precise and accurate dara. However. in certain
systems it is not possible to get the accurare dara. Therefore, Professor Zadeh reasoned thac for process-
ing nced nor always require precise and numerical informacion inpur; processing can be performed even
with imprecise inputs. Suitable feedback controllers may be designed to accept noisy, imprecise inpur,
and they would be much more effective and perhaps casier to implement. The processing with impre-
cise inputs led to the growth of Zadeh's FL. Unfortunately, US manufacturers have not been so quick ro
embrace this technology while the Europeans and Japanese have been aggressively building real products
around ir.

Fuzzy logic is a superser of conventional {or Boolean) logic and conrains similarities and differences with
Boolean logic. FL is similar to Boolean logic in thar Boolean logic results are returned by FL operations
when all fuzzy memberships are restricred to 0 and 1. FL differs from Boolean logic in thar it is permissive
of natural language queries and is more like human thinking; it is based on degrees of truth. For exam-
ple, traditional sets include or do not include an individual element; there is no other case than true or
false. However, fuzzy sets allow partial membership. FL is basically a multivalued logic thac allows inter-
mediace values to be defined between conventional evaluarions such as yesfno, truelfake, blackiwhite, exc.
Notions like rather warm or pretty cold can be formulated mathemarically and processed with the com-
puter. In this way, an attempr is made w apply a more human-like way of thinking in the programming of
COmpurers. ‘

Fuzzy logicis a problem-solving control systermn methodelogy thar lends itself wo implementation in systems
ranging from simple, small, embedded microcontroflers to large, networked, multichannel PC or workstadion-
based data acquisition and control systems. It can be implemented in hardware, software or a combination of
both. FL provides a simple way to arrive at a definite conclusion based upon vague, ambiguous, imprecise,
noisy, or missing inpu information. FLs approach to control problems mimics how a person would make
decisions, only much faster.

6

Introduction

' I 1.4 Genetic Algorithm

Genetic algorithm (GA) is reminiscent of sexual reproduction in which the genes of two parents combine
ta form thase of their children. When it is applied to problem solving, the basic premise is thar we can
create an initial popularion of individuals representing possible solutions to a problem we are trying to solve.
Each of these individuals has cermin characreristics that make them more or less fit as members of the
population. The more fic members will have a higher probability of mating and producing offspring thar have
a significant chance of reraining the desirable characteristics of their parents than the less fit members. This
method is very effective at inding optimal or near-optimal solutions to a wide variety of problems because it
does not impose many limitations required by traditional mechods. It is an elegant generate-and-test strategy
that can identify and exploir regularities in the environment; and results in solutions thac are globally oprimal
or nearly so.

Genetic algorithms are adaprive compurarional procedures modeled on the mechanies of natural genetic
systems, They express their ability by efficiently exploiting the historical information to speculate on new
offspring with expected improved performance. GAs are executed iteratively on a ser of coded solutions,
called population, with three basic operators: selection/reproduction, crossover and muration. They use
only the payoff (objective funcrion) information and probabilistic transition rules for moving to the next

iteration. They are different from most of the normal optimizarion and search procedures in the following
four ways:

1. GAs work with the coding of the parameter ser, not with the parameter themselves;
2. GAs work simultaneously with multiple poinrs, not a’single poing

3. GAs search via sampling (a blind search) using only the payaff informarion;

4. GAs search using stochastic operators, not deterministic riles.

Since a GA works simultancously on a set of coded solutions, it has very litde chance to get stuck a
local optima when used as oprimization rechnique. Again, it does not need any sort of auxiliary information,
like derivative of the optimizing function. Moreover, the resolution of the possible search space is increased
by operating on coded (possible) solutions and not on the solucions themselves. Further, this scarch space
need not be continuous. Recently, GAs are finding widespread applications in solving problems requiring
efficient and effective search, in business, scientific and engineering circles like synthesis of neural network

architectures, traveling salesman prablem, graph coloring, scheduling, numerical optimization, and pattern
recognition and image processing.

l1.5 Hybrid Systems

Hybrid systems can be classified into three different systems: Neuro fuzzy hybrid system; neuron genetic
hybrid system; fuzzy genetic hybrid systems. These are discussed in detail in the following sections.

I 1.5.1 Neuro Fuzzy Hybrid Systems

A neuro fuzzy hybrid system is a fuzzy system thac uses a learning algorichm derived from or inspired by neural
necwork theory to determine its parameters {fuzzy sets and Fuzzy rules) by processing dara samples.

In other words, a newro fuzzy hybrid system refers 1o the combination of fuzzy set theory and neural
nerworks having advantages of both which are listed below.

1. It can handle any kind of information {numeric, linguistic, logical, erc.}.

e ——

1.5 Hybrid Systems . 7

. Tt can manage imprecise, partial, vague or imperf;ct informarion.
. It can resolve conflicts by collaboration and aggregation,

- It has self-learning, self-organizing and self-tuning capabilities.

. It doesn't need prior knowledge of relationships of data.

. It can mimic human decision-making process.,

B - Y TN

. It makes compuration fase by using fuzzy number operations.

Neuro fuzzy hybrid systems combine the advantages of fuzzy systems, which deal with explicit knowledge
that can be explained 2nd understood, and neural necworks, which deal with implicic knowledge that can be
acquired by learning. Neural necwork learning provides a good way o adjust the knowledge of the expert {i.e.,
artficial intelligence system) and automarically generate addidonal fuzzy rules and membership functions
to meer cerrain specifications. It helps reduce design time and costs. On the other hand, FL enhances the
generalization capability of a neural network system by providing more reliable outpur when extrapolation is
needed beyond the limics of the training dara.

I 1.5.2 Neuro Genetic Hybrid Systems

Generic algorichms {GAs) have been increasingly applied in ANN design in several ways: topology opri-
mization, genetic training algorithms-and control parameter optimization. In topology optimization, GA
is used to selecr a copology (number of hidden layers, number of hidden nodes, interconnection patzern)
for the ANN which in urn is rrained using some training scheme, most commonly back propagarion.
In genetic training algorithms, the learning of an ANN is formulated as a weight optimization prob-
lem, usually using the inverse mean squared error as a fitness measure. Many of the contral parameters
such as learning rate, momentum rate, tolerance level, etc., can also be optimized using GAs. In addi-
tion, GAs have been used in many other innovative ways, to create new indicacors based on existing ones,

select good indicarors, evolve optimal trading systems and complement other techniques such as fuzzy
logic.

l 1.5.3 Fuzzy Genetic Hybrid Systems

The optimization abilities of GAs are used ro develop the best set of rules o be used by a fuzzy inference
engine, and to oprimize the choice of membership funcrions. A particular use of GAs is in fuzzy classifi-
cation systems, where an object is classified on the basis of the linguistic values of the object attributes.
The most difficult parr of building a system like this is to find the appropriate sec of fuzzy rules. The
most obvious approach is to obtain knowledge from experts and cranslate this into a set of fuzzy rufes. But
this approach is time consuming, Besides, experts may not be able to put their knowledge inta an appro-
priate form of words. A second approach is w obtain the fuzzy rules through machine learning, whereby
the knowledge is aucomatically excracted or deduced from sample cases. A fuzzy GA is a directed random
search over all (discrete) fuzzy subsees of an interval and has features which make it applicable for solving
this problem. It is capable of creating the classificarion rules for a fuzzy system where objects are classi-
fied by linguistic terms. Coding the rules generically enabics the system to deal with multivalue FL and is
more efficient as it is consistent with numeric coding of fuzzy examples. The training darz and randomly
generated rules are combined 1o create the initial population, giving a better starting point for reproduc-

tion, Finally, a fitness Runetion measures the strength of che rules, balancing the quality and diversity of the
populacion.

8 . Introduction

I 1.6 Soft Computing

The two major problem-selving technologies include:

1. hard compuring;

2. soft compuring,

Hard compuring deals with precise models where accurate solucions are achieved quickly. On the other
hand, soft computing deals with approximare models and gives solution to complex problems. The oo
problem-solving technologies are shown in Figure 1-2. _ o

Soft compuring is a relatively new concept, the term really entering general circularion in 1994. The term
“soft computing” was introduced by Professor Lotfi Zadeh with the objective of explogtmg the tolerance
for imprecision, uncertainty and partial truth vo achieve tractability, robusmes-s, low solution cost af]d better
rapport with realiry. The ultimate goal is to be able to emulare the human mind as closely as possible. Soft
compuring invelves parcnership of several fields, the most important being neural networlfs, GAsand FL. Als:o
included is the field of probabilistic reasoning, employed for its uncertainty control rechniques. However, this
field is not examined here. o

Soft computing uses a combination of GAs, neural nerworks and FL. A hybrid :ed'nm.que, in fact, would
inheric all the advantages, but won't have the less desirable features of single soft computing components. Ir
has to possess a goad learning capacity, a better learning time than chat of pure GAs and less sensitivity to
the problem of local extremes than neural netwotks. In addition, it has to generate a fuzzy knowledge base,
which has a linguistic representation and a very low degree of computational complexity.

An impotrant thing abour the constituents of soft computing is that they are complementary_, not compet-
itive, offering their own advantages and techniques to partnerships to allow solutions to f)t]jcnwse ?ns?lvable
problems. The constiwents of soft computing are examined in turn, following which existing applications of
partnerships are described.

“Negoriation is the communication pracess of a group of agents in order to reach a mur].la!ly accepted
agreement on some matter.” This definition is typical of the research being done into negotiation and co-
ordination in relation to software agents. I is an obvious necessity thac when muldple agents interact, they
will be required to co-ordinate their efforts and atempt to sort ouc any conflicts of resources or interest.

It is important to appreciace thar agents are owned and controlled by people in order o comlp‘lete tasks on
their behalf. An example of a possible mulriple-agent-based negoriation scenario is the competition berween

HARD COMPUTING SOFT COMPUTING

Precise models

[— Approximate models]

—

Symbolic Traditional Func}ionzlil
yl?gic numerical Approximate approximation
reasoning .modeling and reasoning and randomized
(traditional Al) 'search search

Figure 1-2 Problem-solving technologies.

1.7 Summary 9

long-distance phone call providers. When the consumer picks up the phonc and dials, an agent will com-
municate on the consumer’s behalf wich all the available network providers. Each provider will make an
offer that the consumer agent can accept or rejecr. ‘A realistic goal would be to select the lowest avail-
able price for the call. However, given the first counid. of offers, network providers may wish ro modify
their offer to make it more competitive. The new offet is then submirted ro the consumer agenr and the
process continues until a conclusion is reached, One advantage of this process is that the provider can
dynamically alter its pricing strategy ro account for changes in demand and competition, therefore max-
imizing revenue. The consumer will obviously benefit from the constant competition between providers.
Best of all, the process is entirely autonompus as the agents embody and acr on the beliefs and con-
straints of the parries they represent. Further changes can be made to the protocol so thae providers
can bid low without being in danger of making a loss. For example, if the consumer chooses to go
with the lowest bid bur pays the second lowest price, this will take away the incentive to underbid or
overbid.

Much of the negotiation theory is based around human behavior models and, as a result, it is often trans-
lated using Distributed Artificial Intelligence techniques. The problems associated with machine negotiation

are as difficult to solve as they are with human negotiation and involve issues such as privacy, securiry and
deceprion.

IJ.T Summary

The computing world has a lot to gain from neural neworks whose ability to learn by example makes them
very flexible and powerful. In case of neural nerworks, there is no need ro devise an algorithm 1o perform a
specific rask, i.e., therc is no need to understand cthe internal mechanisms of that task, Neura! networks are
also well suited for real-time systems because of their fasc response and computational times, which are due
to their parallef architecture,

Neural nerworks also contribute to other areas of research such as neurology and psychology. They are
regularly used to model parts of living organisms and to investigate the internal mechanisms of che brain.
Perhaps the most exciting aspect of neural nerworks is the possibility that someday “conscious” networks
might be produced. Today, many scientists bhelieve that consciousness is a “mechanical” property and that
“conscious” neural networks are a realistic possibiliry.

Fuzzy logic was conceived as a better method for sorting and handling data but has proven to be an excellent
choice for many contro] system applications since it mimics hurman concrol logic. Tt can be built into anything
from small, hand-held products to large, compurerized process control systems. It uses an imprecise but very
descriptive language to deal with input dara more like a human operator. It is robust and often works when
first implemented with little or no tuning,

When applied to optimize ANNs for forecasting and classification problems, GAs can be used to search
for the right combination of inpuc data, the most suitable forecas horizon, the optimal or near-optimal
nerwork interconnection parterns and weights among the neurons, and the congrol parameters (learning reze,
momentum rate, tolerance level, etc.} based on the training data used and the pre-se criteria. Like ANNs,
GAs do not always guarantee you 2 perfect solution, but in many cases, you can arrive atan acceprable solution
without the time and expense of an exhaustive search,

Soft computing is 2 relatively new concepr, the term really entering general cisculation in 1994, coined by
Professor Lotfi Zadeh of the University of California, Berkeley, USA, it encampasses several fields of compur-
ing. The three that have been examined in this chapeer are neural networks, FL and GAs. Neural networks are
important for their ability to adapt and learn, FL for its exploitation of partial rruth and imprecision, and GAs

10 Iniroduction

for their application to optimization. The field of probabilistic reasoning is also sometimes included under Fhe
soft computing umbrella for ks control of randomness and uncertainty. The imporcance of sofi computing
lies in using these mechodologies in partnership — they all offer their own benefics which are generally not
competitive and can therefore, work together. As a result, several hybrid systems were looked at ~ systems in
which such partnerships exist.

Artificial Neural Netwurk_; |

it ﬂCf,lD,' @
e

An Introduction

t

Learning Objectives

The fundamentals of artificial neural ner-
work,

The evolurion of neural netwarks.

Comparison between biological neuron and
artificial neuron,

Basic models of artificial neural necworks.

The different types of connections of neural
nerworks, learning and activation functions

* Various terminologies and notations used
throughour the text.

* The basic fundamenial neuron model —
McCulloch—Pirs neuron and Hebb nerwork,

* The concept of linear separability o form
decision boundary regions.

are included.

o

2,1 Fundamental Concept

H b Mo

Neural nerworks are those informarion processing systems, which are constructed and implemented to model
the human brain. The main objective of the neural nerwork research is to develop a compurational device
for modeling the brain to perform various computational tasks at a faster rate than the traditional systems.

~, Amificial neural negworks perform various rasks such as patt@n—m and ‘classification, optimization

d data.clusrering - These tasks are very difficult for traditional

function, approximation, vecror quantizatio
= h - - D R et
<Com purers, Which are Faster iifalgorithimic computational tasks#ndiprecise arithmetic operations. Therefore,

for implemencation of artificial nefratmerworks, high-speed digiral compurers are used, which makes the
T —

simulation of neural processes feasible.

2.1.1 Artificial Neural Network

As already stated in Chapter 1, an arificial neural necwork (ANN) is an efficient information processing
system which resembles in characteristics with a biological neural necwork. ANNs possess large number of
highly interconnected processing elements called nodes or units or newrens, which usually operare in parallel
and are configured in regular architectures. Each neuron is connected with the other by a connection link. Each
connection link is associated with weights which contain information abour the inpur signal. This information
is used by the neuron net 1o solve a parricular problem. ANN' collective behavior is characterized by their
ability to learn, recall and generalzerraimiog-piterns or data similar to that of a human brain. They have the
capability t© model nerworks of oniginal mettoms-as-found in the brain. Thus, the ANN processing elements

are called seuroms or artificial neuro N
O Y
Vet

-~ -
\A'? L
1 o
)

12 v Ariificial Neural Network: An Introduction
X'I
W«
. ()“—*J’
W
X%

Flgure 2-1 Architecture of a simple artificial neuron ner.

1 - 1

1
lnput____,®__:_m_:_..®____—>mx

I——-—J

Figure 2-2 Neural ner of pure linear equation.

It should be noted that each ncuron has an incernal stare of its own. This internal staré is called the
activation or activity level of neuron, which is the function of the inpurts the neuron receives. The activation
signal of 2 neuron is transmitted to other neurons. Remembef a neuron can send only one signal at a time,
which can be transmitred to several other neurons.

To depict the basic operation of a neural net, consider a set of neurons, say X, and X3, transmiering signals
to another neuron, Y. Here X; and X; are input neurons, which transmi signals, and Y is the outpur neuron,
which receives signals. Inpur neurons X; and X; are connected o the output neuron Y, over a weighted
interconnection links (W) and W3) as shown in Figure 2-1.

For the above simple neuron net architecture, the net inpu bas ro be calculared in the following way:

Yin =t xiw +xoun

where x) and x; ate the activations of the input neurons X and Xy, ie., the oucput of inpur signals. The
outpur’FoF the output neuron Y can be obtained by applying aEtvations over the net input, i.e., the function
of the net input:

¥=F(rin)
Qutput = Function {net input caleulated)

The function to be applied over the net inpu is called activation funetion. There are various activation functions,
which will be discussed in the forthn;)r—n'iPngSCmQTva/_ecalculation of the nec inpuc is similar to the
calculation ofoutan {p = mx). The neural net of a pure linear equation
is as shown in Figure 2-2.

Here, to obrain the output 3, the slope is directly multiplied with the input signal. This is a linear
equacion. Thus, when slope and input are linearly varied, the output is also linearly varied, as shown in
Figure 2-3. This shows that the weight involved in the ANN is equivalent to the slope of the linear seraight
line.

l 2.1.2 Biological Neural Network

Tt is well-known that the human brain consists of a huge number of neurons, approximately 10!, wich numer-
ous interconnections. A schematic diagram of a biological neuron is shown in Figure 2-4.

Y |

2.1 Fundamental Concept 13

T .) Slope = m

X —»

Figure 2-3 Graph for y = mx.

Synapse

Nucleus Cell body \
(Soma)

Dendntes o ‘

Figure 2-4 Schemaric diagram of a blologiml neuron.

The biological neuron depicted in Figure 2-4 consists of three main parts:
1. Soma or cell body — where the cell nucleus is located.
2. Dendrites— where the nerve is connected ro the cell body.

3. Axon — which carries the impulses of the neuron.

Dendrires are tree-like networks made of nerve fiber connected 1o the cell body. An axon is a single, long
connection extending from the cell body and carrying signals from the neuron. The end of the axon splits into

Mﬁ hete are approximately
19* synapses ber neuron ifthe an brain.

es are passed berween the synapse and the dendrites. This type of signal rransmission involves
a chemical process in which specific transmitter substances are released from the sending side of the juncriop,
This resalts in increase or decrease in thm&al inside the body of the recziving cell. If the elecrric
potenial reaches 4 threshald then the receiving cell fires and a prlie or action posential of fixed strength and
duration is sent out theough the axon ro the sypaptic junctions of the other cells. Afrer firing, 2 cell has to wait
for a period of Gme called the @Before it can fire again. The synapses are said to be inhibitory i

they let passing impulses hinde of the receiving cell or exctatory if they let passing impulses cause
the firing of the receiving cell.
iyt ot —_

fine strands. It is found that each strand terminates into a smalk bulb-Jike o ed synapse. It is thro
u@%ﬂﬂﬂtﬁfﬂmﬂaﬂﬂmﬂw The receiving ends of HRESE SyTpses
on neurons can be tound both on the dendrites and on i

cim

14 Artificial Neural Netwerk: An Introduction
Inpuls
4 ' Weights
& Output
. y ~
@ Wy T Output
: ¥
. w Processing
' n element
; o

-

AN

N

Figure 2-5 Mathematical model of arsificial aeuron.

Table 2-1 Terminology relationships berween
biological and artificial neurons

Biological neuron Artificial neuron

Cell ' Neuron

Dendrices Weights or interconnections
Soma Ner inpur

Axen Quiput

Figure 2-5 shows a mathemarical representarion of the above-discussed chemical processing raking place
int an arcificial neuron,

In this model, the net inpu is elucidated as
n
Yin = xiun txpup e+ X0y = Ex;w,'
i=1

where / represencs the fth processing element. The activation function is applied over it to calculate the
output. The weight represents the strength of synapse connecting the input and the output neurons. A pos-
itive weight corresponds 10 an excitatory synapse, and a negative weight corresponds to an inhibirory
synapse.

The terms associared with the biological neuron and their counterparts in arcificial neuron are presenced
in Table 2-1.

2.1.3 Brain vs. Computer — Comparison Between Biological Neuron and
Artificial Neuron (Brain vs. Computer) :

A comparison could be made berween biclogical and asificial neurons on the basis of the following criteria:

1. Speed: lemwwxw whereas in the case of biolog-
ical neuron it is of a few milliseconds, Hence, the arrificial neuron modeled using a computer is more

faster. = —

J

2.1 Fundamental Concept 15

2. Propessing: Basically, the biological neuron can perform massive parallel operations simultaneously. The
artificial neuron can also perform several parallel operations simuTRNEoTNYrbrerin general, the ardificial
ncuron neswork process is faster than that of the brain.

3. Size and complexity: The total number of netrons in the brain is about 10" and the toral number of
interconnections is about 10'3. Hence, it can be nioted that the complexity of the brain is comparatively
higher, i.e. the computational work takes places notonly in the brain cell body, but alse in axon, synapse,
erc. On the other hand, the size and complexity of an ANN is based on the chosen application and
the network designer. The size and complexity of 2 biclogical neuron is more than thar'of an ardficial

neuror™"

4. Srorage capacity (memory): The biological neuron stores the information in its interconnections or in
synapse strength but in an artificial neuron it is stored in its contiguous memory locations, Tn amartificial
neuron, the continuous loading of new information may sometimes overload the memory locarions. As a
result, some of the addresses containing older memory locations may be destroyed. Bur in case of the brain,
new information can be added in the interconnections by adjusting the strengch without destroying the
older information. A disadvantage related o brain is that sometimes its memory may fail to recollect the
stored information whereas in an artificial neuron, once che informacion is stored in its memory locations,
it can be retrieved. Owing to these facts, the adaprability is more toward an artificial neuron.

5. Tolerance: The biological neuron possesses fault tolerant capabmcas the artificial neuron has no
fault olerance. The‘ distributed namge of the biological neurons enables to store and retrieve informérion
even when the interconnections in them get disconnecred. Thus biological neurons arefaulerotefant. Bucin
case of arrificial neurons, the information gets CMCCI if the network interconnections are disconnecred.

Biological neurons can accept redundancies, which is not possible in artificial neurons. Even when some
cells die, the human nervous system appears to be performing with the same efficiency.

6. Control mechanism: 1In an artificial neuron modeled using a compucer, there is a conurol unit present in
Central Processing Unic, which can cransfer and control precise scalar values from unit to unit, but there
is no such control unit for monitoring in the brain. The strength ot a neuron in the brain depends on the
active chemicals present and whether neuron connections are strong or weak as a result of structure layer
rather (BatT méradual synapses. However, the ANN possesses simpler interconnections and is fre€ from
chemical actions similar to those taking place in brain {biclogical neuron). Thus, the control mechanism
of an arcificial neuron is very simple compared to that of a biological neuron. -

So, we have gone through a comparison berween ANNs and biological neural networks. In short, we can
say that an ANN possesses the following characteristics:

. Itis a neurally implemented m:t—h;l&fmal_moﬁﬁl\
. Ther@mf Righly interconnected processing elements called neurons in an ANN.

. The interconnections with their weighted linkages hold the informative knowledge.
. The input signals arrive at the processing elemencs through connections and connecting weights.

. The processing elements of the ANN have the ability to learn, recall and generalize from the given data
by suitable assignment or adjustment of weighes.

Y .

6. The compusational power can be demonstrated only by the collective behavior of neurons, and it should
be noted that no single neuron catries specific information.
S

The above-mentioned characteristics make the ANNs as connectionist madels, parallel distributed processing
models, self-organizing systems, neuro-computing systems and neuro-morphic systems.
e £

e —

——

16 Artificial Neural Network: An Introduction

I 2.2 Evolution of Neural Networks

The evolution of neural nerworks has been facilitated by the rapid developmenc of architectures and algorithms

that are currently being used. The history of the development of neural networks along with che names of
their designers is outlined Table 2-2.

In the lacer years, the discovery of the neural nex resulred in the implementation of optical neural nets,
Boltumann machine, spatiotemporal nes, pulsed neural networks and support vector machines,

Table 2-2 Evolution of neural nerworks

Year Nenral
network

Designer Description

1943 McCullochand McCullochand The arrangemenc of nenrons in this case is a combination of logic
Pins neuron Pirs functions. Unique fearure of this neuron is the concepr of

threshold.

It is based upon the fact thar if two neurons are found to be active

simulraneously then the strength of che connection beoween them
should be increased.

1949 Hebb necwork Hebb

1958, Perceprron Frank Here the weights on the connection path can be adjusted.
1959, Rosenblate,

1962, - Block, Minsky

1988 and Papert

1960 Adaline Widrow and Here the weights are adjusted to reduce che difference between the

Hoff nec inpu to the output unit and the desired oucpur. The resule
here is very negligible. Mean squared error is obrained.

1972 Kohonen Kohonen The concepe behind this nerwork is thar the inputs are clustered
self-organizing together to obtain a fired outpur neuron. The cluscering is
feature map performed by winner-take all policy.

1982, Hophield John Hopfield This neural necwork is based on fixed weighes. These nets can also

1984, nenwork and Tank act 4s associalive Memaory ners.

1985,

1986,

1987

1986 Back- Rumelhart, This network is multi-layer with error being propagaced backwards
propagation Hinton and from the cutpur units to the hidden unies.
nerwork Williams

1988 Counrer- Grossberg This nerwork is similar to che Kohonen nerwork; here the learning
propagation occurs for all units in a particular layer, and there exists ne
nerwork competirion among these uniss.

1987— Adapdve Carpenterand ~ The ART network is designed for both binary inputs and analog

1990 Resonance Grossberg valued inputs. Here the input patcerns can be presented in any
Theory (ART) order.

1988 Radial basis Broomhead and This resembles a back propagation nerwork but the activation
function Lowe funcrion used is a Gaussian functon,
network

1988 Nco cognitron Fukushima This nerwork is essential for characrer recognicion. The deficiency

oceurred in cognitron network (1975} was corrected by chis
nerwork. :

i 59

2.3 Basic Mode's of Artificial Neural Network 17

2.3 Basic Models of Artificial Neural' Network

aWﬂm are specified by the three basic entities namely:
1. the model’s synaptic interconnections; - .

2. the training o learning rules adopted for updating aiid adjusting the connection weights;
3. their activation functions.

l2.3.1 Connections

The neurons should be visualized for their arrangements in layers. An ANN consists of a set of highly inter-
connected processing elements (neurons) such that each processing element output is foind tobe connecred
through<weights to the other processing elements or to itself; delay lead and lag-free conniectiops are allowed.
Hence, the arrangements of these processing elements and-tii€ promietry of their interconnectipns are essential
for an ANN. The point where the connection originates and terminates should Be noted, ahd the function

ofEach processing element in an ANN should be specified.
Besides thesimple neuron shown in Figure 22, there exist several ocher cypes of neural network connrections.

The arrangement of neurons i form layers and the connection patern formed within and berween layers is
led the meswark architectiire. There exist five basic types of neuron connection archirectures. They are:

. single-layer feed-forwardnerwork;
. multilayer feed-forward network;
. single node with its own feedback;

. single-layer recurrent nerwork;

Wb tw b o

. mulrilayer recurrent nerwork.

Figures 2-6-2-10 depicr the five types of neural nerwork architectures. Basically, neural nets are cl?.ssiﬁefi
into single-layer or multilayer neural mets. A layer is formed by taking a processing element and combining it
with other processing elements. Practically, a layer implies a stage, going stage by scage, i.e., theinpurstage fmd
the outpur stage are linked with each other. These linked interconnections lead to the formation of various
network architecrures. When a layer of the processing nodes is formed, the inputs can be connected to these

Tnpul Quiput

layer

Input
neurons

Qutput ~
neurons

Figure 2-6 Single-layer feed-forward nerwork

18 Artificial Neural Network; An Introduction

Input Hidden
layar . layers

Output
neurous

Figure 2-7 Mulilayer feed-forward nerwork.

Qutput

Feedback

0]
Figure 2-8 (A) Single node with own feedback. {B} Compericive necs.

T e e

nodes with vartous weights, resulting in@@w Thus, a single-layer feed-forward
e —— e

nerwark is formed.

A multifayer-féed-forward nerwork (Figure 2-7) is formed by the interconnection of several layers. The
input layer is that which receives the input and this layer has no funcrion except buffering the input signal.
The outpur layer generates the outpu of the netwark. Any layer that is formed bcrwcermlipu:
layers is called hidden layer. This hidden layer is internal to the network and has no direct contact with the
external environment. It should be nored that there may be zero o several hidden fayers in an ANN. More the
number of the hidden layers, more is the complexity of the network. This may, however, provide an efficient

outpur response. In case of afulfy Connected nerwor)every output from one layer is connected to d
every node in the nexc layer. .

A rierwark is said to be a feed-forward nerwork if no neuron in the output layer is an input to a node in
the same layer or in the preceding layer. On the other hand, when ourputs can be directed back as inputs o
same or preceding layer nodes then it results in the formation c@_gg@

If the feedback of the outpur of the processing elements $directed back a§ inpur to the processing

elements in the_same layer then—icivcalledtTarer! fedback. Recurrent nerworks are feedback networks
with clgsed laop. Figure 2-8{A) shows a simple recurrent netral network having a single neuron with

9.3 Basic Mode!s of Antificial Neural Network - 19

Input layer

Figure 2-10 Mulrilayer recurrent network.

feedback to itself. Figure 2-9 shows a single-layer nerwork with a feedback connection in which a processing
element’s output can be directed back to the processing element itself or to the other processing element or
10 both.

The architecture of a competitive layer is shown in Figure 2-8(B), the competitive interconnections having
fixed weights of —e. This net is called Maorer, and will be discussed in the unsupervised learning nctvaork
category. Apart from the network architecrares discussed so far, there also exists another type of architec-

ture with lateral feedback, which is called the an—cm/urM[inbibirion structwre. In this

————

H A . 'l'
IR A Flgure2-11E€m/umn_ﬂ@

o h . . itk . @, - o
structure, each processing neuron receives two different classes of inputs — “excitatory” input from pearby

20 Artificial Neural Network: An Introduction

DO

processing elements and “inhibitory” inputs from more distandy located progessing elements. This type of
interedRnection is shown in Figure'2:1T: I R

In Figure 2-11, the connections with open circles are excitatory connections and the links with solid con-
nective circles are inhibitory connections, From Figure 2-10, it can be noted thar a processing ¢lement outpur
can be directed back to the nodes in a preceding layer, forming a multilayer recurrent neswork. Also, in these
nerworks, a processing element output can be directed back to the processing element itself and to other pro-
cessing elements in the same layer. Thus, the various network archirectures as discussed from Figures 2-6-2-11
can be suitably used for giving effective solution to a problem by using ANN.

I 2.3.2 Leaming

The main property of an ANN is its capability to learn. Learning or training is a process by means of which a

neural nerwork adapts itself to a stimulus by makingﬁ;)rc)pEp_a_rgmg:c: adjustmengy, resulting in the production
of desired response. Broadly, there are rwo kinds of [earning in ANNs:

). Parameter leaning: It updaces the connecting weights in a neural net.

2. Structure learning: Itfocusesonthe change in network scructure (which includes the number of processing
elements as well as cheir connection types).

The above two types of learning can be performed simultanecusly or separately. Apart from these rwo categories
of learning, the learning in an ANN can be generally classified into three categories as: supervised learning;
unsupervised fearning; reinforcement learning, Let us discuss these learning rypes in detail.

2.3.2.1 Supervised Learning

The learning here is performed with the help of a teacher. Let us rake the example of the learning process
of a small child. The child doesn't know how to read/write. Hefshe is being raught by the parents at home
and by the teacher in school. The children are trained and molded to recognize the alphabets, numerdls, etc.
Their each and every action is supervised by a teacher. Actually, a child works on the basis of the output that
he/she has to produce. All these real-time events involve supervised learning medhodology. Similarly, in ANNs
following the supervised learning, each input vector requires a cat ding wrpet vector, which represents
the desired output. The input vecror domm%mm
informed precisely about whar should be emitted 25 output. The block d%gm\n:%f‘-igure 2-12 depicts the
working of a supervised leatning network.

During training, the input vector is presented to the nerwork, which results in an output vector. This
output vector is the actual output vector. Then che actual output vector is compared with the desized (targer)
ourput vector. If there exists a difference bevween the two ourput vectors then an error signal is generated by

PR

9.3 Basic Models of Artificial Neural Network 21
Neural)
K network - - Y .
{Input) W - (Actual output)

O

)

5

Error
. Error
D_ 3 - =
S(ign:I)s signal I D
generator (Desired output)

Figure 2-12 Supervised learning.

the necwork, This error signal is used for adjustment of weights until the a =
(target) ourput. In this type of training, a supervisor or teacher is required foerror minimiza ! .
nerwork trained by this method is said to be using supervised training methodologyIn supervised learning,
it is assumed that the correct “target” output values are known for each input patern.

ches.the desired
i Hence, the

2.3.2.2 Unsupervised Learning

The learning here is performed without che help of a teacher. Consider the learning process of 2 tadpolel, it
learns by icself, that is, a child fish learns to swim by itself, it is not raugh by it mother. "_['hus, its l_earmng
process is independent and is not supervised by a teacher. In ANNs following Lfnsupervlsed learning, the
if_F’EEE“E_'?F—Si—nlilM—WPB are grouped without tm@mea& Wch
group looks or :mﬁgm. n the training process, T:“ﬁetw?rk receives the input
patterns and organizes these patterns to form clusters. When a new input patern is applied, the 1.1cural
network gives an ourpur response indicaring.the ¢ which the input patrern belongs. I.F for an input,
a partern class cannot be found the@wmmmf unsupervised learning is
shown in Figure 2-13.

From Figure 2-13 it is clear thar thete is no feedback from the environment to inform whar the outputs
should be or whether the outputs are correct. In this case, the nerwork must iwself discover pastens, Tegu-.
farities, features or caregorics from the input dara and relations for the input data over the output. While
discovering all these features, the netwdrk undeigoes change In its parameters. IRis_Process 1g called self-

organizing in which exact clusters will be formed by discovering similarities and dissimilarities among the
objects.

—

2.8.2.3 Reinforcement Learning

‘This learning process is similar to supervised learning. In the case of supervised learning, the correct target
oueput values are known for each input pattern. But, in some cases, less information might be available.

ANN .
(In);ut) hid (Ach \; lput)
ual oulpu
| I

Figure 2-13 Unsupervised learning.

22 Arfificial Neural Network: An Intreduction

Neural
—— nétwork Y
{input) W (Actual output)
Eror Error
signals signal e R
generator (Relnforcament
signal)

Flgure 2-14 Reinforcement learning.

For example, the necowork might be told char its zctual output is only “50% correct” or so. Thus, here only
critic informarion is available, not the exact information. The learning based on this ¢ritic informarion is
called reinforcemnent learning and the feedback sent is called reinforeement signale

The block diagram of reinforcement leamning 15 shown in Figure 2-14. The reinforcement learning is
form of supervis i the necwork receives some feedback from its environment. However, the
feedback obrained here is only evaluative and notinstructive. The external remforcemment signals are processed
in the critic signal generator, and the obtained critic signals are sent to the ANN for adjustment of weights
properly so as to ger berter critic feedback in furure. The reinforcement learning is also called learning with a
critic as opposed to learning with a teacher, which indicares supervised learning, '

So, now you've a fair underseanding of the three generalized learning rules used in the training process of
ANNs,

I 2.3.3 Activation Functions

To better understand the role of the activation funcrion, let us assume a person is performing some work.
To make the wotk more efficient and to obeain exact outpur, some force or activation may be given. This
activarion helps in achieving the exact oucpur. In a similar way, the activation function is applied over the ner

- D S—
inpug to-ealewlate_the outpur of an ANN,
The information processing of a processing element can be viewed as consisting of two major parts: input

and outpuc. An integration function (say f) is associated with the input of a processing element. This function
serves to combine activarion, informarion or evidence from an external source or other pracessing elements
into a fier input to the processing element. The nonlinear activatton NICHGT i Eé’d’t?m’mmga_;eumn's
response is mm:d tesponse of the neuron is conditioned or dampened as a r f
large or small activating stimuli and is thus controllable,

Certain nonlinear Functions are used to achieve the advantages of a multilayer nerwork from a single-layer
nerwork. When a signal is fed through a muldilayer nerwork with linear activation functions, the ourpur
obtained remains same as chat could be cbtained using a single-layer network. Due to this reason, nonlinear
functions are widely used in multilayer networks compared to linear functions.

-
There are several activation functions. Let us discuss a few in this section: ¢ y
. , s . . W
1. Identity funciion: Tt is a linear function and can be defined as o oo
fE)=x forallx B e

2.3 Basic Models of Artificial Neural Network 23

The output here remains the same as inpue. The input layer uses the identity activation function.
2. Binary step function: This function can be defined as

- [1 ifx=0
f(")={0 if x< 8

where 8 represents the threshold value. This function is most widely used in single-layer nets to convert
the net inpur to an outpur that is a binary (1 or 0).

3. Bipolar step fumction: 'This function can be defined as

: 1 ifx20
f(")=[-1 if x< 8

where 6 represents the threshold value. This funcrion is also used in single-layer nets to convert the net
input to an outpu that is bipolar (+1 or —1).

4. Sigmoidal functions. The sigmoidal functions are widely used in back-propagation nets because of t.hc
relationship between the value of the functions at a point and the value of the derivative at that point

which reduces the computational burden during training.
Sigmoidal Funcrions are of two types: -

* Binary sigmoid function: It is also termed as logistic sigmoid function or unipolar sigmoid function.
It can be defined as

1
14+

fl)=

where A is the steepness parameter. The derivative of this function is
e m—————

L N
Lf&%ﬂfMUfo{J

Here the range of the sigmoid functi a3 from O to 1.

Bipolar sigmoid function: This function is defined as

2 S et
f@= 1= T =

where A is the steepness pasareter and the sigmoid funcrion range is between —1 and +1. The derivative
of this fifriciion tarbe

fw=§u+ﬂmu—ﬂm

The bipolar sigmoidal function is closely related o hyperbolic tangent function, which is written as

X 2x

b _e‘-—e_ _ 1—¢
W= =TT =

The derivarive of the hyperbolic tangent function is
Hix) =1+ A1 — &)

24 Artificial Neural Network: An Introduction

If the nerwork uses a binary data, it is better to convert it to bipolar form and use the bipolar sigmoidal

activation Tunction or hyperbolic tangent funcrion. ——
h'h'_-——..,_

S. Ramp function: ‘The ramp function is defined as
1 ifx>1
fly=4x fF0<x=1
0 ifx<0

The graphical representarions of all the activation functions are shown in Figure 2-15(A)—(F).

I 2.4 Important Terminologies of ANNs

This section inttoduces you to the various terminologies related wich ANNs.

l D.4.1 Weights

In thearchitecture of an ANN, each neuron is connected to other neurons by means of directed communication
links, and each communication link is associated with weights. The weighes contain informarion abour the
inpur signal. This information is used by the net to solve a problem. The weight can| ented in
‘Erﬁ_s?fgmatrix. The weight marrix can Zonnection matrix. To form 2 mathematical notation, it
is assumed that there are “#” processing elements in an ANN and each processing element has exactly “n”
adaptive weights. Thus, the weight matrix W is defined by o

T

- - — ﬁ’\‘
w) wiowiz ... W\ﬂ S

T DA
wy wy wn Wy D

RS

W= =
Lw?;_ Lyl Wp2 - . . . Wy

where w; = [wi, wp, .., @il 2= 1,2, is the weighe vector of processing elemenr and wy is the

w

weight from processing element “#” (source node) to processing elemnent “;” {destination node).

IF the weight matrix W conrains all the adaptive elements of an ANN, then the set of all W macrices
will derermine the ser of all possible information processing configurations for this ANN. The ANN can be
realized by finding an appropriate matrix W. Hence, the weights encode long-term memory (LTM) and the
activation states of neurons encode short-term memory (STM) in a neural nerwork.

Iﬁ‘? Bias

The bigs included ip the netwark has its impact in calcularing the net input. The bias is included by adding
a component xg = 1 to the input vector X 1hus, the input vector becomes

X=(LX,....%,.. ., Xy

2.4 Importent Terminologies of ANNs 25
11 1)
f(x}
0 x
@ . (®)
)
+1
0 X N\
» A=101=5 x=2 k=1 A=05
(C) (D)
f(x}
% A=7 A=5 k=3 A=1.5 k=1
(E)

Figure 2-15 Depicrion of activation functions: (A) identity function; (B) binary step function; (C} bipolar step
function; (D) binary sigmoidal funcrion; (E) bipolar sigmoidal function; (F) ramp function.

The bias is considered like another weighr, that is,!" woj\= b4 Consider 2 simple network shown in Figure 2-16
with bias. From Figure 2-16, the ner input to the'duput neuron Y; is caleulated as

n
Yinj = Exiwr‘j = apuygj + xiwyy + xpuapt -+ Xatn
i=0

"
= wgj + Zx,-w,j

=1

n
ying = b+ Y %

i=1

26 Artificial Neural Network: An Introduction

Figure 2-16 Simple net wich bias.

¢ (Bias)

(Welght)
' m N N
Input *@F Y —> y=mx+c

Flgure 2-17 Block diagram for straighe line.

The activation function discussed in Seetion 2.3.3 is applied over chis net input to calculate the ourpur. The
bias can also be explained as follows: Consider an equarion of straight line,

y=nmx+¢

where x is the input, m is the weight, ¢ is the bias and y is the oucput. The equacion of the scraight line can
also be represented as a block diagram shown in Figure 2-17. Thus, bias plays a major role in determining
the ourpu of the necwork.

The bias can be of two types: positive bias and negarive bias. The positive bias helps in increasing the nec
inpur of the nerwork and the negarive bias helps in decreasing l’.hﬂ_ ner inpur of e _pe - Thus, as a resule
of the bias effect, the ourput of the network can be varied.

12.4.3 Threshotd

Threshold is a ser value based upon which the final outpur of the nerwork may be calculared. The threshold
value is used in the activation function, A comparison is made between the catetlared-nerinput and the
threshold to obmin the nerwork oucput. For each and every applicafios, théré 1 4 threshold limit. Consider a
direct current (DC) motor, If its maximum speed3-L500 rpm then the chreshold based on the speed is 1500
rpm. Ifthe mosor is run on a speed higher than its set threshold, it may damage motor coils. Similarly, in neural
networks, based on the threshold value, the activation functions are defined and the output is calculated. The
activation function using threshold can be defined as O TTr——

1 ifner>p
—1 ifner< @

flne = [

where 6 is the fixed threshold value.

2.6 McCuloch—Pitts Neuron 27

o

1
?

‘ N
I 2.4.4 Learning Rate - ,;-‘C) o

)
b
¥

The learning rate is denoted by “o.” It is used to contro] the mﬂnﬁg\mmmw

training. The learning rate, ranging from 0 to 1, c%etc.r_’fgiﬁes the rate of learning at each rime step.

I 2.4.5 Momentum Factor '

Convergence is made faster if a momentum factor is added to the weight updarion process, This is generally

done in the back propagation nerwork. If momentum has to be used, the weights from one or more previous

waining patterns muse be saved. Momentum helps the net in reasonably large welght adjustments undl the
e S - H

corrections are in the same general direction for several patterns.

I 2.4.6 Vigilance Parameter

. The vigilance parameter is denoted by “p.” It is generally used in adaptive resonance theory (ART) nerwork.

The vigilance parameter is used to control the degree of similarity required for patteens to be assigned o the

same cluster unit. The ciioice of vigilatics parametertanges-gppreximately from ﬁ./l7to to perform useful
Woik in controlling the number of clusters.

l2.4.7 Notations

The-notations mentioned in this section have been used in this textbook for explaining each nerwork.

xi: Activation of unit X;, inpur signal.

yir Activation of unic Yo 3 = Oing)

wi: Weight on connection from unit X; to unic Y;.

b;: Biasacting on unit /. Bias has a constant activation of 1.
W Weighe matrix, W = {w}

Finji Net input to unit Y; given by iy = b + 3, siww

[Ix}l: Norm of magnitude vector X.

6. Threshold for activation of neuron Yj.

§: Training input vector, § = (s1,..., 5, ...,)

T: Training output vector, T = (t1,.. ., 2.+)

X Inputvector, X = (¥1,..., % ..., Xn)

Ay Change in weights given by Awy; = wi{new) — w;{old)

o: Learning race; it controls the amount of weight adjuscment ac each step of training,

I 2.5 McCulloch~Pitts Neuron

L2.5.1 Theory

The McCulloch~Pitts neuron was the earliest neural nerwork discovered in 1943. It is usually called as M—P
neuron. The M—P neurons are connected by directed weighted parhs. It should be noted that the activation of
a M-P neuron is binary, that is, at any rime step the neuron B3 he weights associated
with the communication links may be excitatory (weight is positive) or inhibitory (weight is negative). All the

[N
.

28 Antificial Naural Network: An Introduction

excicatory connected weights entering into a particular neuron will have same weights. The threshold plays
a major role in M~P neuron: There is a fixed threshold for each neuron, and if the net input to the neuron
is greater than the threshold then the neuron fires. Also, it should be noted that any nonzero inhibitory

input would prevent the neuron from firing, The M-P neurons are most widely used in the case of logic
functions: —

l 2.5.2 Architecture

A simple M—P neuron is shown in Figure 2-18. As already discussed, the M—P neuron has both excitatory and
inhibirory connections. It is excitatory with weight (w> 0} or inhibitory with weight —p{p < 0}. In Figure
2-18, inputs from x; to x,, possess excitatory weighted connections and inputs from x4} (0 %4 o possess
inhibitory weighted interconnections. Since the firing of the output neuren is based upon the threshold, the
activation function here is defined as

S if yim 20
f(?m)‘lo if 3y < 0

Forinhibition w be absolute, the threshold with the activation function should sarisfy the following condition:

& >nw=-p

-
The outpuc will fire if it receives sa@ mo;a\é)tcuatory mput.j.but no inthibitory inputs, where

T

kw >0 > (k -—l)w

The M-P neuron has no particular cralnmg algorithm. An analysis has to be performed to determine the
values of the weights and che threshold. Here the weights of the neurcmd to
make the neuron perform a simple logic function,..Fhe-M= s are used as building blocks on which
we can model any funcrion or phenomenon, which can be represented as a logic huricrion.

'Figure 2-18 McCulloch—Pitts neuron model.

2.6 Linear Separability . . 29

I 2.6 Linear Separability

An ANN does not give an exacr solution for a nonlinear. problem. However, it provides possible approximate
solutions g nonlinear problems. Linear semmt wherein the separation of the input space
into mglor%%?ﬁmu: network tesponse is_positive or negative.

A decision line is drawn to separate positive and negative responscs. The decision line may also be called as

the decision-making line or decision-support line or lincar-separable line. The necessity of the linear separability

concept was felt to classify the paue on their output responses. Generally the net input
to the GUIPIT TnIL i given as

L

n
Yin =0+ Zx,—w,-
=1

Fot exarnple, if a@lp@ function is used over the calculared nee input {3;5) then the value of
the function’is 1 for a positive net input and —1 for a negative net input. Also, it is clear that there exists 2
boundary becween the regions where yi, > 0and y;, < 0. This region may be called as decision bonndary and
can be determined by the relation

u .
b+ Zx;w,- =0
i=1

On the basis of the number of input units in the network, the above equation may represent a line, a plane
or 2 hyperplane. The linear separability of the necwork is based on the decision-boundary line. If there exist
weights (with bias) for which the training input vecrors having positive {correct) response, +1, lic on one side
of the decision boundary and all che other vectors having negative (incorrect) response, —1, lie on the other
side of the decision boundary.then we can conclude me@;g?'s “linearly separable.”

Consider a single-layer network as shown in Figure 2- ias included. The net input for the nerwork
shown in Figure 2-19 is given as

Fin=1b+ xiwq +

The separating line for which the boundary lies beoween the values x; and 3, so that the net gives a positive
tesponse on one side and negarive response on other side, is given as

b+ xun +ou =10

< d
{Output)

Figure 2-19 A single-layer neural ner.

30 Artificial Neural Network: An tntroduction

If weight = is not equal to O then we ger
w b

0n=—-——x——
un

Thus, the requirement for the positive response of the net is
b+xjw; +xqus > 0

During training process, the values of w1, un and b are determined so that the net will produce a positive
(correct) response for the crainifig
for obtaining the positive response from outpur unit is

Net inpur received > 8 (threshold) (

Yin> 6
xw +xun > 8

The separating line equation will then be
xew + xpuy =8
8
== {with wp # 0)
w wa

During training process, the values of wy and w; have to be determined, so thar the net will have a correct
response to the training data. For this correct response, the line passes close through the otigin. In cerrain
situarions, even for correct response, the separating line does not pass through the origin.

Consider a nerwork having positve response in the first quadrant and negative response in all other
quadrants (AND function) with either binary or bipolar data, then the decision line is drawn separating the
positive response region from the negative response region, This is depicred in Figure 2-20.

Thus, based on the conditions discussed above, the equation of this decision line may be obtained.
Also, in all the neoworks that we would be discussing, the representation of data plays a major role.

X

+
{Positive rasponse region)

{Negalive response region)

_xl

Decision
line

%
Figure 2-20 Decision boundary line.

on the other hand, threshold value is being used, then the condition

2.7 Hebb Network 3N

However, the dara representation mode has to be decided — whether it would be in binary form or in

bipolar form. It may be noted that the blpolar represenrauon is better than the binary representation.
Using bipolar data representarion, t

ues ate tepresented by 0 and mistakes can be reprcsented by reversing the inpur value from +1 10 —1 or

Vlce'versa - ot
o D,

[27_Hebb Network [eﬂ(,u, one m{m,Lun* -

I 2.7.1 Theory .

For a neural net, the Hebb learning rule is a simple one. Let us understand ir. Donald Hebb stated in 1949

that in the brain, the learning is performed by th¢'€hange in the synapric ebb explained it: “When an

axon of cell A is near enough 1o excite cell B, m%ﬁake& place in firing it, some.
gmmj%eﬂwhabmgemkes place in one or both the cells such thar A's efficiency, as one of the

el hiring B, is increased.”

According to the Hebb rule, the weight vector is found to increase proportionately to the product of the
inpur and 'the learning signal. Here the learning signal is equal to the neuron’s ourpur. In Hebb learning,
if two interconnected neurons are ‘on’ simultanegusly then the weiglits amociated with these neurons can

be increased by the modification made in their Synaptic gep (strength). The weight update in Hebb rule is
given by

wi{new) = w;{old) + x;y

The Hebb rule is more suited for bipolar dara than binary dara. If binary dara is used, the above weight
updation formula cannot distinguish two conditions namely: —
1. A training pair in which an input unic is “on” and targer value is “off.”

2. A training pair in-which both the input unit and the rargec value are “off.”

Thus, there are limitations in Hebb rule application over binary data. Hence, the represencation using bipolar
data is advantageous. -

I 2.72 Flowchart of Training Algorithm

The training algorithm is used for the calculation and adlustment of weights. The flowchare for the training
algorithm of Hebb network is given in Figure 2-21. The notations used in the flowchart have already been
discussed in Section 2.4.7.

In Figure 2-21, 5: ¢ refers to each training inpuc and targee output pair. Till there exists a pair of training
input and target outpar, the training process takes place; else, it T Sopped.

I 2.73 Training Algorithm

The training algorithm of Hebb network is given below:

| Step 0: First initialize the weights. Basically in this network they may be sediro zero, ie., w; —Ofori=11
to n where “n” may be the total number of inpur neurons.

Step 1: Steps 2—4 have to be performed for each input training vector and target output pait, 5: =

32 . Artificial Neural Netwaork: An Introduction

{ Starl)

l Initialize weights

Activate input unils
x=5

Activate outpul unils
y=t

Weight update
w,(new) = w{old)+x y

Bias update
b (new) = blold}+y

-@(\, Stop

- ()

. m Figure 2-21 Flowcharc of Hebb rraining algorichmn.

Stép 2: Inpurunits acrivations are set, Generally, the activation function of input layer is identiry funcdion:
Step 3: Ourpuc units activations are set: y = £,

Step 4: Weight adjustments and bias adjudtments are performed:

wi{new) = w;i(oldy + x;y
b(new) = blold) + ¥

2.8 Solved Problems : 33

The above five steps complete the algorithmic process. In Step 4, the weight updation formula can also be

given in vector form as
winew) = w(old) + xy
Here the change in weight can be expressed as
Aw=xy
As a result,
w(l:ew) =wlold) + Aw

The Hebb rule can be used for pattern association, pattern categorization, pattern classification and over a
range of ather areas.

I 2.8 Summary

In this chapter we have discussed the basics of an ANN and its growth. A deeiled comparison berween
biolegical neuron and artificial neuron has been included to enable the reader understand the basic difference
between them. An ANN is conscrucred with few basic building blocks. The building blocks are based on
the models of artificial neurons and the topology of few basic structures. Concepts of supervised leamning,
unsupervised learning and reinforcement learning are briefly included in this chapter. Various activation
functions and different types of layered connections are also considered here. The basic rerminalogies of ANN
are discussed with their typical values. A brief descriprion on McCulloch—Pites neuron model is provided.
The concepr of linear separabiliy is discussed and illustrated with suitable examples. Derails are provided for
the effective training of a Hebb network.

I 2.9 Solved Problems

1. For the network shown in Figure 1, calculare the weights are
net inpue to the ourput neuron.

[11:12- 1'3} = [0-3, 0-5, 0-6]
[w, wa, ws] = [0.2,0.1, —0.3]

The net inpuc can be calculated as

Yin = 1wy + quy + x3u3
=03x024+05x0.1+06x(-0.3)
=0.06+0.05 — 0.18 = —0.07

2. Calculare the ner input for the nerwork shown in
Figure 2 with bias included in the network.

Figure 1 Neural net.

Solution: The given neural net consists of threeinpur ~ Solution: The piven net consists of two input
nenrons and one output neuron. The inputs and neurons, a bias and an output neuron. The inputs are

34

Artificial Neural Network: An Introduction

Figure 2 Simple neural net.

[x1, 3] = [0.2,0.6] and the weights are [w), w2] =
[0.3,0.7). Since the bias is included & = 0.45 and
bias input xq is equal to 1, the net input is calou-
lated as
Fin = b+ xyw1 + 2w
=0.45+02x03+06x07
= 0.45+0.06 + 042 = 0.93

Therefore yin = 0.93 is the net input.

3. Obrain the output of the neuron Y for the net-
work shown in Figure 3 using activation func-
tions as: (i) binary sigmeidal and (ii) bipolar
sigmoidal.

0.6 0.3

a4

Figure 3 Neural nec.

Solution: The given nerwork has three inpuc neu-
rons with bias and one oucput neuron. These form
a single-layer network. The inputs are given as
[x1,x2,x3] = [0.8,0.6,0.4] and the weights are
[y, 9, w3] = [0.1,0.3, —0.2] with bias $=10.33
{its input is always 1).

The net inpuc to the output neuron is

¥in = b+ Z XjW;
i=l
[n = 3. because only
3 input neurons are given]
= b+ x1wy + xaun + X303
=0354+08x01+06x%x03
+0.4x%x(—02)
=0.35 4 0.08 + 0.18 — 0.08 = 0.53

(i) For binary sigmoidal activation function,

1 1

y=Flm = T = T3 0% =~ 065

(iiy For bipolar sigmoidal acrivation function,

2

Ty !

2
= iy = ——— — 1=
7= Fom T4t

=0.259
4. Implemeat AND function using McCulloch-Pires
neuron (take binary data).

Solution: Consider the cruth table for AND function
(Table 1).

Table 1

X1) J
1 1 1
1 0 0
0 1 0
0 0 0

In McCulloch—Picts neuron, only analysis is being
performed. Hence, assume the weights be w1 = 1
and w; = 1. The network architecture is shown in
Figure 4. With these assumed weights, the net inpur
is calculated for four inputs: For inputs

(L1, pp=xmtxum=1x1+Ixl=2
(1L,0), yw=mw+xuwr=1x1+0x1=1
0,1), y;,,=x1w1+X2wz=0xl+1x1=1
0,0, yin=xw +xun=0x1+0x1=0

s, Implement

2.9 Solved Prablems

X

Figure 4 Neural net.

For an AND function, the output is high if both the
inpus are high. For this condition, the net input is
calculated as 2. Hence, based on this ner input, the
threshold is ser, i.e. if the threshold value is greater
than or equal ro 2 then the neuron Fires, else it does
not fire. So che threshold value is setequal to 2{6'= 2).

This can also be obrained by .
'\v Oznw—p
N AT

Here, n= 2, = 1 (excitatory weights) and p = 0
{no inhibitory weights). Substitudng these values in
the above-mentioned equation we get

frlixl—-0=6022
Thus, the output of neuron Y can be written as

Vifgmz2 B
—_] = L WA
y=flad =19 i Fin< 2 -

i ‘i‘ i
o

where “2" represents the threshold value.

ANDNOT function using
McCulloch-Ditts neuron (use binary daw
representation).

Solution: In the case of ANDNOT funcrion, the
response is true if the fist input is true and the
second inpur is false. For all other inpuc variations,
the response is false. The truch table for ANDNOT
funcrion is given in Table 2.

35
Table 2
A m X,
0 0 0
CQ._-\I__ 0 @
1 1 0

The given funcrion givesan outpur onlywhenx =1
and x = 0. The weights have o be decided only afrer
the analysis. The net can be represented as shown in

Figure 5. o DO &
i

Xt

‘Figure 5 Neural ner (weights fixed after analysis).

Case 1: Assume that both weights un and wy are
excieatory, Le.,

w=w=1
Then for the four inputs calentate the net input using
Yin = X110 +omun
For inpurts

(L), pp=1x1+1Ix1=2
(1,0), pn=1%x1+4+0x%x1=1
0,1), yy=0x1+1x1=1
0,0, y9u=0x1+0x1=0

From the calculated net inputs, it is not possible to
fire the newron for input (1, 0) only. Hence, these

weights are not siiable. ,\.P/\(/\L’) 7 ‘7)
Assume one weight as excitato and the técr as k.
inhibitory, i.e., . u‘{\ﬂ"‘

wy =1, up=-1

36 Artificial Neural Network: An Introduction

Now calculase the net input. For the inputs A single-layer ner is not sufficient 1o represent the

L1, pn=1x14+1x~1=0 ﬁmcuoln.Anm:ermedlate layer is necessary.
(llo)l _yirr:lx 1+0X—-1=1 s
0.1} ym=0x14+Ex—-1=-1
0,0, pir=0%x14+0x—-1=0 t
From the calculated net inputs, now it is possible

to fire the neuron for input (1, 0) only by fixing a
threshold of 1, i.e., 8 = 1 for Y unir. Thus,

Figure 6 Neural net for XOR function (the

Note: The value of 8 is mlqulated using the following: shown are ebuaincd after analysis).

6> nw-p First function (#] = x%3): The rruch tble for

funcrion 2; is shown in Table 4.

022x1~1 - [for*p" ighibitory only

‘N ‘:" magnitude considered] Table 4
9=>1 FaN ———
- 5\“’2.\5 x] x2 E4
Thus, the output of neuron Y can be wrirten as g ? g
EPYR B | 1] i
»=fin) = IU if yip < 1 1 1 i]

The net representation is given as

6. Implemenc XOR function using McCulloch-Piers Case 1: Assume both weights as excitatory, i.e

neuron {consider binary data).

Solution: The truth table for XOR function is given wn = wy =1
in Table 3.
Caleulate the ner inpus. For inputs,

Table 3
x) x ¥ (0.0).31;,,=0xl+0xl=0
0 0 0 0,1, 21,=0x1+1x1=1
0 1 1 (LOhzZyr=1x14+0x1=1
1 0 1 L z=1%x1+1x1=2
1 1 0

Hence, it is not possible 1o obrain funcrion z
using these weighes.

Case 2: Assume one weight as excitatory and the
other as inhibitory, i.e.,

In this case, the outpur is “ON” foronly odd number
of 1's, For the rest it is “OFE” XOR function cannot
be represented by simple and single logic function; it
is represented as

wn =1, wy=-I

y=x33 + X0 T

=z +z
’ O fmman)
where
5 =x%3 (function 1)
o =X {funcion 2)

y=21(0R)z, (function 3) Figure 7 Neural net for Z;.

2.9 Solved Problems

37

Zoin=X Wiz +XWaz

Figure 8 Neural net for 7.
Calculate the net inputs. For inputs
0,0), 215, =0x14+0x—-1=0+
0,1z =0x14+1x~1=—1
(1,0, zi=1%x14+0x -1 =1
(1,1),21,‘,:1)(1.-}-] X=1=0

On the basis of this calculated net input, it is
possible to get the required outpur. Hence,

Ly Ly
wyp =1 P!S‘\r oA
un) = —1

8 > 1 forthe Z;, neuren

T T T T
+ Second function {2z = %7x3): The truth table for
function z; is shown in Table 5.

. ;
Table 5 .0
x x z

0 0 0

0 I 1

1 0 0]

1 1 0

The net representation is given as follows:
Case 1: Assume both weights as excitatory, i.e.,

Wiy =mwy =1
Now calculate the net inputs. For the inputs

(0,0), 225y =0x 1+ 0x1=0
01 z2n=0x1+1x1=1
(L0, zppn=1x14+0x1=1
Lmm=1x1+1x1=2

Hence, it is not possible to obrain function z
using these weights.

Case 2: Assume one weight as excitatory and the
other as inhibirory, i.c.,

wp==-1, wp=1

" Now caloulate the net inputs. For the inputs

{0,0), 0jp =0x —-14+0x1=0

(2/]7—524 O zzim=0x—~1+1x1=1

(1,0} zpp=1x -14+0x 1 =—1
(L), zgw=1x

Thus, based on this
possible to ger the requi

wiz = —1
- wyy =1
S 8 21 fortheZ; neuron

[e
+ Third function {y = £; OR 22): The truth table
for this function is shown in Table 6.

Table 6

X1 x2 ¥ z1 22
0 0 0 0 0
0 1 1 0 1
1 1] i 1 0
| 1 0 0 0

Here the net input is calculated using
P . ,
Case 1; Assume both weights as excitatory, i.e.,
n=wmn=1
Now calculate the net input. For inputs

0,0), in =0 x140x1=0
©1), pn=0xI+1xi=1
(LO), yin=1x1+0x1=1
(L), Jin=0x14+0x1=0

(because for x;, = land x3 = 1,z = 0 and
z=0)

38

Artificial Neural Natwork: An Introduction

Figure 9 Neural nec for Y (Z; OR Z2).

Serting a threshold of 8 > 1,5 = 1y = 1, which
implies that the net is recognized. Therefore, the

analysis is made for XOR function using M-P
neurons. Thus for XOR function, the weights are
obrained as

wyy =unp =1 (excitatory)
w12 = wz) = —1 (inhibitory)
py=1 =1 ({excitatory)
7. Using the linear separabiliry concepr, obtain the

response for OR function (take bipolar inpurs and
bipolar targets).

Solution: Table 7 is the truth table for OR function
with bipolar inputs and targets.

Table 7

x| X ¥
1 1 1
1 -1 1

-1 1 1

~1 -1 -1

The truch rable inputs and corresponding ourpurs
have been plotted in Figure 10. If ourpur is 1, it is

denoted as “+” else “—.” Assuming che coordinaces
as (—1,0) and (0, —=1); {x;, 1) and {x2, 32), the slope
“m" of the straight line can be obtained as

n-n _-1-0 -l

m=t———=—— = — =]

X — Xy 0+1 1

We now calculare

c=y —mx =0-(=1}-1)=~1

X

(1
+

X

6 .
SR

¢)
"] ™\ Funelion dacislon
boundary

Figure 10 Graph for ‘OR’ function.

Using this value the equarion for the line is given as
y=mitce=(-lx—1=—x—1

Here the quadrants are not x and y but x) and x;, so
the above equation becomes

,,,,, ——
[®m=—x—1 . 2.1
This can be written as
—uwy b
X = ——x = — (22)
wa u

Comparing Eqgs. (2.1) and (2.2), we get

wy 1 b 1

N =

173} 1 w; I

Therefore, w; = 1, w2 = 1 and & = 1. Calculating
the net inpur and ourput of OR fufiction on the basis
of these weights and bias, we ger entries in Table 8.

Table 8 /\

n om b yp=btmuiFtmury y |
1 1 1 /\b—) .
Io—1 1 1 1

-1 o1 1

-1 -1 1 -1 -1

. I3
Thus, the outpur of neuron Y can be writtenas ¥

— LYy = 1 if.yr'nzl
r=FUw =10 ifym<1

L

2.9 Solved Problems

32

where the threshold is taken as 1" (6 =1} based
on the calculated net input. Hence, using the linear
separability concepr, the response is obrained for
“OR” function. ‘

8. Design 2 Hebb net ro implement logical AND
function {use bipolar inputs and targets). '

Solution: The training data for the AND funcrion is
given in Table 9.

0

Table 9
Inputs Target
X1 X2 b ¥
1 1 1 1
1 -1 1 -1
-1 1 1 -1
~1 -1 1 -1

The nerwork is trained using the Hebb nerwork teain-

ing algorithm discussed in Section 2.7.3. Initially the

At

weights and bias are set 1o zero, Le.,

First input [x) x2] =11 1] and targer = 1
li.e., y=1]: Serting the initial weights as old
weights and applying the Hebb rule, we get

wi(new) = wi{old} + x;y

wi{new) = w)(old) +xy=0+1x1=1

unfnew) = wylold) + xy =0+ I x 1 =1
blnew) = blold) +y=0+1=1

The weights calculated above are the final weights
thar are obrained after presenting the first input.
These weights are used as the initial weights when
the second input partern is presented. The weight
change here is Aw; = x;y. Hence weight changes
relating to the first input are

Awj=xiy=1x1=1
Awp=xy=1x1=1
Ab=y=1

Second input vy bl=[1 -1 1] and
y = —1: The initial or old weights here are the

final (new) weights obtained by presenting the
first input partern, i.¢.,

[y wa B} =[111]

" The weight change here is

Aw) =xy=1x-1=-1
Awy=smy=-lx-1=1
Ab=y=—1

The new weights here are

w{new) = wifold) + Awy =1-1=0
wy (new) = unlold) + Awp =141 =12
blnew) = blold) + Ab=1-1=0

Similarly, by presenting the third and fourth
input patterns, the new weights can be calculated.
Table 10 shows the values of weights for all inpucs.

Table 10
Inputs Weight changes Weighis
x1 by Aw Aun Abuy wn b

(0 0 0)

1 11 1 1 I 1 1 1 1
1-11-1 =1 1 -1 0 2 0
-1 11-1 1 -1 -1 1 1-1
-1 -11-1 1 1 -1 2 2-=2

The separating line equarion is given by

—un b
= ——x — —
W) W

For all inputs, use the final weights obrained
for each input to obtain the separating line.
For the first input [1 1 1], the separating line is
given by

-1
=-—x3 - = =—x1 —1
x2 i | 1 X2 1

Similarly, for the second inpuc [1 -1 1], the
separating line is

-0 0 0
= —X] — - =
L) 3 1 2=>x2

40

Artificial Neural Network: An Introduction

(t. 1)

""I
\ (1._*1)
{A) First Inpul
*
{-1.1 (1.1}
- +
2,=0
xl
(—1._-1) (1.——1)
(B} Second inpul
%
(=51} (1.1
+
xl
(-1._—1) {1.:1)

(C) Third and fourth inputs

Figure 11 Decision boundary for AND
funcrion using Hebb rule for

each training pair.

For the third input [—1 1 1], it is

-1 1
1‘2=TII+T=?'1‘2=—I1+1

Finally, for the fourth input -1 = 1 1], the
separating [ine is

Za+is +1
= ——x - = —X
"= At Sn 1

The graphs for each of these separating lines
obrained are shown in Figure 11, In this figure
“+” mark is used for outpur “1” and “—" mark
is used for outpur "—1." From Figure 11, it can
be noticed char. for the first input, the decision
boundary differentiates only the first and fourth
inpus, and nior all negative responses are separated
from positive responses. When the second input
pattern is presented, the decision boundary sep-
arates (1, 1) from (1, —1) and (—~1, —1) and not
(=1, 1). But the boundary line is same for the both
third and fourth training pairs. And, the decision
boundary line obtained from these input training
pairs separates the positive response region from

the negative response region. Hence, the weighes
obtained from this are the final welghrs d-are
given as

wm =2 =2 b=-2

The network can be represented as shown in
Figure 12.

Figure 12 Hebb net for AND function.

9. Design a Hebb ner to implement OR function

{consider bipolar inputs and wrges).

i

2.9 Selved Problems

4

Solution: The training pair for the OR function is
given in Table 11.

Table 11
Inputs Target
x1 x2 b ¥
1 1 1 1
1 ~1 1 1
-1 i 1 1,
-1 -1 1 -1

Initially the weights and bias ate sec to zero, i.e.,

The necwork is trained and the final weights are out-
lined using the Hebb training algorithm discussed
in Section 2.7.3. The weights are considered s final
weights if the boundary line obtained from these
weights separates the positive response region and
negarive response region.

By presenting all the input patterns, the weights
are calculated. Table 12 shows the weights calculared
for all the inputs.

Table 12
Inpurs Weight changes Weights
¥ x by Aw Awmy A-b w wy b
© o 0
1 i1 1 t 1 11 1 1
I -1 1 1 I -1 1 2 6 2
-1 11 1 -1 1 1 1 1 3
-1 -1 1 =1 1 I -1 2 2 2

Using the final weights, the boundary line equation
can be obtained. The separaring line equation is
—u b -2 2

= —— _——_—= ——=—-x—1
X2 H)le wr le 3 1

Thedecision region for this nevis shown in Figure 13.
It is observed in Figure 13 that strzught line ;y =

—x} — 1 separates the pattern space into two regions.
The input parrerns [(1, 1) (1, =1}, (-1, 1)} forwhich
the ourpur response is “1” lie on one side of the

boundary, and the i input pattern (—1, —1) for which

the output response is “—1" lies on the other side of
the boundary. Thus, the final weights are

The network can be represented as shown in
Figure 14,

% 6* e b
4" "'

ﬂ

-11 .4}

(—17-1) a.-n

—_—
2
X 7\ 2
X Y 4
O
2
*2

Figure 14 Hebb net for OR funcrion.

10. Use the Hebb rule method to implement XOR
function (rake bipolar inputs and rargets).

Solution: The training patterns for an XOR funcion
are shown in Table 13.

Tabile 13
foputs Target
xn o n by
1 11 -1
1 -11 1
-1 P 1 1
-1 -1 1 =1

)
Jo
”(J"\

:\
T

42

Artificial Neural Metwork: An Intraduclion

Here, a single-layer nerwork with two input neurons,
one bias and one output neuron is considered. In
this case also, the initial weights are assumed to be
zer0:

w=un=6=0
By using the Hebb trining algorithm, the nerwork is

trained and the final weights are calculated as shown
in the following Table 14.

Table 14
Inputs

Weight changes Weights

x ox by Aw Aun Ab wy un b
o 0o O

1 11 -1 -1 =1 =1 —-1-1-1
1-11 1 1 -1 1 0-2 O
-1 11 1 -1 i I -1 -1 1
-1-11-1 1 1 -1 ¢ 0 0

The final weights obrained after presenting all the
inpur patterns da not give correct ourput for all pac-
terns. Figure 15 shows that the input patterns are
linearly non-separable. The graph shown in Figure 15
indicares that the four input pairs thac are present can-
not be divided by a single line to separate them into
two regions. Thus XOR function is a case of a pactern
classification problem, which is not linearly separable.

X j!'\‘:u/
(-1.1) 11 | 3
e
+ - ‘."\0
(No dec/i;iox
X, beundary Iine)/'
— + -
{-1.-1) {.-1)
5

Figure 15 Decision boundary for XOR function.

The XOR function can be made linearly separable by
solving it in a manner as discussed in Problem 6. This
method of solving will result in two decision bound-
ary lines for separaring positive and negative regions
of XOR funcrion.

11. Using the Hebb rule, find the weights required to
perform the following classifications of the given
input pacterns shown in Figure 16. The pasern
is shown a5 3 x 3 macrix form in the squares. The
“+" symbols represent the value “1” and empty
squares indicate “—1." Consider “I" belongs to
the members of class (so has target value 1) and
“0” does not belong to the members of class
{so has rarger value -1).

+ |+]+ + 0+ | +
+ + +

+ o+]+)+]+
P '

Figure 16 Data for input patterns.

Solution: The training input patterns for the given
net {Figure 16) are indicated in Table 15.

Table 15
Patrern

Inputs Targer
Xy X ¥ X x5 X X7 b oy
I 1 11-1 1-11111 1

o 111 1-1 11111 -1

Here a single-layer nerwork with nine input neurons,
one bias and one output neuron is formed. Ser the
initial weights and bias ro zero, i.e.,

w = =Wy = Wy = s

wg=uwr=wg=wg =5b=10

Case I: Presenting first input pattern (I), we calculate
change in weights: '
Auwi=xp i=11w09

Awy=xy=1x1=1

il

vz |)t o b

2.9 Solved Problems

43

Aun=xy=1x1=1
Awg=xyy=1x1=1
Awi =xgy=—1x1=-1
Auws=xy=1x1=1
Awg=xgy=—~1x1=-1
Aur=xpy=1x1=1
Aug=xmy=1x1=1
Aug=xgy=1x1=1
Ab=y=1

We now calculare the new weights using the formula
wi{new) = wi{old) + Aw;

Setting che old weighes as the initdal weighes here,
we obrain

wifnew) = wylold}) + Amw; =051=1
wal(new) = unf{old) + Aun =04+1=1
wilnew) = wfold) + Aws =0+1=

Similarly, caleularing for other weights we get

wilnew} = 1, wslnew) =1, wglnew) = —1,
wylnew) = 1, wglnew) =1, wolnew) =1,
blnew) =1

The weights after presenting fitst input pattern are
Winewy=[111-11-11111]

Case 2: Now we present the second inpuc parrern
(O). The initial weights used here are the final weights
obtained after presenting the firstinput parrern. Here,
the weighrs are calculared a5 shown below (y = —1
with the initial weighesbeing [111-11—-11111]).

wiinew) = wifold} + Ax; [Aw; = xp]

wi(new) = wifold) + xjy=14+1%x-1=0
ua(new) = unfold) + xpy=1+1x-1=0

wa(new) = wafold) +x3y=14+1x-1=0
wilnew) = wilold) + xgy= —1 +1 x =1 = =2
Hfs(new) =wsfold) +xp= 14+ -1x~-1=2
wg('new) = wglold) +xgy=—14+1x —1=-2
wy(new) = wylold) +xyy=14+1x ~1=0
wg{new) = wgleld} + xgy=1+1x-1=0
wo{new) = wofold} + gy =1+1x-1=0
blnew) = blold) +y=1+1x-1=0

The final weights after presenting the second input
pattern are given as

The weighes obtained are indicared in the Hebb net
shown in Figure 17,

12. Find the weights required to perform the follow-
ing classifications of given inpur patterns using
the Hebb rule. The inpurs are “1" where “+”
symbol is presentand “—1" where “.” Is present.
“L” pactern belongs to the class (target value +1)
and “U" pattern does not belong to the class
(rarget value —1).

Solution: The training inpur parterns for Figure 18
are given in Table 16.

Table 16
Pattern

Inputs Targer

X| X2 X3 X5 X5 X6 xyxgy by
L 1 -1-11-1-111T11 1

I-1 11-1 11111 =1

A single-layer network with nine input neurons, one
bias and one output neuron is formed. Set the initial
weights and bias to zero, Le.,

W= wy ==y = s
=wg=uwr=wg=uwg=6=10
The weights are calculated using
w;(new) = wylold) + x;y

Avtificial Neural Network; An Introduction 2.9 Solved Problems o

The caleulated weights are given in Table 17.

Table 17 ;

X

— T N
Inputs Target Weights
/
$m om v w % w oo b Y U1 W W WA w5 we oy wsowy b
% @O0 0 000200 00
1 -1-11-1-11111 ¢ bD=t=Lb=1=11 1171
X3
-1 0 0 =200 -200 0 0
1 -1 1 1 -t 1 1111 =L
Xy

The obrained weights are indicated in the Hebb ner

3 . . -n ut

The final weights after presenting the two inP chown in Figute 19,
° y patterns are g

2

Winew) =[00 ~200 —20000j

®® 6 6 @ 0

' X
i
| (%)
!
. X,
*3 , : @
3
S (%)
Figure 17 Hebb nex for the data matrix shown in Figure 16. : X @
0 ° 4
%
() =
+ . . + . % g
(o) >
Q
+ . . + » + Xy e
Xa
+ + + + + + @
- v
. . Xa
Figure 18 Inpur dara for given pacterns. @

Figure 19 Hebb net of Figure 18.

46

Artificial Neural Network: An Introduction

l2.1 0 Review Questions

1.
2.

10.

11.

12.
13.

14,

Define an artificial nevural nerwork.

State the properties of the processing element of
an artifictal neural necwork.

. How many signals can be sent by a neuron aca

particular rime instant?

. Draw a simple artificial neuron and discuss the

calcularion of net input.

. Wha is the influence of a linear equation over

the net input calculation?

. List the main components of the biological

neuron.

. Compare and contrast biological neuron and

artificial neuron.

. State the characreristics of an artificial neural

nerwork.

. Discuss in detail the historical developmenc of

artificial neural nerworks, .

YWhar are che basic models of an artificial neural
necvork?

Define net architecture and give irs classifica-
tions.

Define learning.

Differentiace berween supervised and unsuper-
vised learning,

How is the criticinformacion used in che learning
process?

I 2.11 Exercise Problems

15.
16.
17.

18
19,
20.
2L

22,

23,

24,

25.
26.

27.

28,

29,

30.

What is the necessity of activation function?
List the commonly used acrivation functions.

Whar is the impace of weight in an arificial
neural network?

What is the other name for weight?
Define bias and threshold.
What is a learning rate parameter?

How does a momentum factor make faster
convergence of a network?

State the role of vigilance parameter in ART
network.

Why is the McCulloch-Pirts neuron widely used
in logic funcdons?

Indicate the difference berween excirarory and
inhibitory weighted interconnections.

Define linear separability.

Justify — XOR funcrion is non-lineatly separable
by a single decision boundary line.

How can the equation of astraight line be formed
using linear separabiliy?

In what ways is bipolar representation betcer than
binary representation?

State the training algorithm used for che Hebb
necwork,

Compare feed-forward and feedback network.

1. For the nerwork shown in Figure 20, calculate the ner inpur to the outpur neuron.

Figure 20 Neural ner.

e

2.12 Projects

47

2. Caleulate the outpur of neuron Y for the net
shown in Figare 21. Use binary and bipolar
sigmoidal activation functions.

Figure 21 Neural ne:.

3. Design neural necworks with only one M-P

neuron that implements the three basic logic 9

aperations:
{i) NOT (x;}
(i) OR (xy, 22}
{iiiy NAND {xy, x3), where x) and 12 € {0, 1},

4, (a) Show that the derivative of unipolar sig-
moidal function is

100 =Af1 = F)]

(b) Show that the derivacive of bipolar sigmoidal
funcrion is

Fl= %u +FOI0 —)

5. {a) Construct a feed-forward necwork wish five
input nodes, three hidden nodes and four ourput
nodes that has lateral inhibicion structure in the
outpuc layer.

L2.12 Projects

Gy

{b) Construct a recurrent neewerk with four
input nodes, three hidden nodes and two ourput
nodes that has feedback links from the hidden
layer to the input layer.

.. Using linear separability coriccpt, obtain che
. response for NAND function.

. Design a Hebb ner to implement logical AND

function wich
(a) binary inpurs and rargees and
(b) binary inpurs and bipolar rargets.

. Implement NOR function using Hebb ner wich

{a} bipolar inpuzs and wargets and

{b) bipolar inputs and binary rargers.

Classify the inpur pattetns shown in Figure 22
using Hebb training algorithm.

+ + ¥ + + T
+ . + + N .
+ + + + + +
+ . + + ’ .
+ . + + + +
A g
Target value +1 -1

Figure 22 Inpuc pattern.

10. Using Hebb rule, find che weights required 1o

perform following classifications. The vecrors
(1 —11~1)and {111 ~1}belong 10 class (rarger
value +1); vectors (—1 —1 1 Dand (11 -1 —1)
do nor belong to class (rarger value —1), Also
using each of training x vecrors as inpuy, rest the
response of net.

1. Write a program to classify the letzers and numer- 2.
als using Hebb learning rule. Take a pair of letters
or numerals of your own. Also, after training 5
the network, test the response of the net using
suitable activation function. Petform the clas-
sification using bipolar data as well as binary
dara.

4,

Wxit;__suimb{e programs for implementing logic
funcrions using McCulloch~Pius neuran,

Write a compurter program to train a Madaline to
perform AND function, using MRI algorithm.

Write a program for implementing BPN for
training a single-hidden-layer back-propagation

48

. Arificial Neural Network: An Intreduction

necwork with bipolar sigmoidal units (L= 1) 1o
achieve the following two-to-one mappings:

* y=Gsin(rx) + cos(mxy)

* y = sin{mrx1) cos(0.27xp)

Set up two sets of data, each consisting of 10
input-output pairs, one for training and other for

testing. The input—output data are obtained by
varying input variables (x|, x3) within [—1,+1]
randomly. Also the ourput dara are normahized
wichin (—1,1). Apply craining to find proper
weights in the nerwork.

Qeas aohomn

Supervised Learning Network

— Learning Objectives £

* The basic nerworks in supervised learning, Adaline, Madaline, back-propagation and

* How the perceptron learning rule is betcer radial basis function network.

than the Hebb rule.

* Original perceperon layer description.

* The various learning facrors used in BPN.

+ An overview of Time Delay, Function Link,
Waveler and Tree Neural Nerworks,

* Difference between back-propagarion and
RBF nerworks.

Delta rule with single outpur unit.

Architecre, flowcharr, training algorithm
and testing algorithm for perceperon,

I 3.1 iInfroduction

The chapter covers major topics involving supervised learning nerworks and their associated single-layer
and multilayer feed-forward necworks. The following topics have Beén discussed in derail — the percéptron
learning rule for simple perceptrons, the defta rule (Widrow-Hoff rule) for Adaline 2nd single-layer feed-
forward neoworks with continuous activation functions, and the back-propagarion algorithm for multilayer
feed-forward nerworks with continucus activarion functions. In shorr, all the feed-forward networks have
been explored.

I3.2 Perceptron Networks

IEJ Theory

Perceprron networks come under single-layer feed-forward necworks and are also called simple perceptrons,
As described in Table 2-2 (Evolution of Neural Networks) in Chapter 2, various rypes of perceptrons were
designed by Rosenblate (1962) and Minsky-Papert {1969, 1988). However, a simple perceprron nerwork was
discovered by Block in 1962,

The key points to be noted in a perceperon nerwork are:

1. The perceptron network consists of three units, namely, sensory unit {input unit), associator unit (hidden
unit}, response unit {output unic).

3

e R X

* the response unit are trainable.

50 Supervised Leaming Network

. The sensory units are connected to associator unis with fixed weights having values 1, 0 or —1, which are

assigned ar random.

. The binary activation function is used in sensory unit and associator unit.

4. The response unit has anaceivation of 1, 0 or —1. The binary step with fixed threshold @ is used as
activartion for associator, The outpur signals that are sent from che associator unit to che response unit are
only binary. - —

5. The outpuc of the perceptron nerwork is given by

~

'_7\ \\-': ‘ J’=f()’m)

2" where Fiyin} is accivation function and is defined as
oA

e RN ¢ 1 if yp> 8

0 if ~8 <y, =P

—1 if yin<—0

e

f(}'l'n) =

. The perceptron learning rule is used in che weight updarion berween the associator unic and the response
unit. For each training input, the ner will calculate the response and it will détermine whethet o1 7ot an

error has occurred.

7. The error calculation is based on the comparison of the values of targets with those of the calculaced
onrputs.

8. The weights on the connections from the units thar send the nonzero signal will get adjusted suitably.

9. The weights will be adjusted on the basis of the learning rule if an errar has occurred for a particular
\‘-——\l——_,,_,—.——.——"—-——.—_
cmining Earteru.i.c.,_

wi{new) = wilold) + or
b(new) = bold) + o

1f no error oceurs, there is o weight updation and hence the training process may be stopped. In the above
equations, the rarget value “r” is +1 or — t and w is the learning rate. In general, these learning rules begin with
an initial guess at the weight values and then successive adjusements are made on the basis of the evalyation

of an abjective function. Eventually, the learning rules reach a near-optimal or optimal solution in a finite

-»_.——/'

nuinber of steps.
mcpcron necwork with its three units is shown in Figure 3-1. As shown in Figure 3-1, a sensory unic
can be a two-dimensional matrix of 400 photodetectars upon which a lighted picrure with geometric black
and white pattern impinges. These detectors provide a binary (0} electrical signal if the input signal is found
to exceed a certain value of threshold. Also, these detectors are connegted randomly with the associaror Unic.
“The associator unit is Found 6 Gonsisc of a set of subcircuics called rmure predicates. The feature predicates are
hard-wired co detect the specific feature of a pattern and arc e
fearure, cach predicate is examined wich a few or all of the
the results from the predicate units are also binary {0
pastern-recognizers or perceptrons. The weights pr

fvalent to the feature detectors. For a particular
ponses of the sensory unit. It can be found chac
1). The last unit, i.e. response unit, concains the
fit in the input layers are all fixed, while the weights on

. _‘_

3.2 Percepiron Netwarks

51
Output Desired
Fixad weight oort output
valus of\, 0, -1 " b
at rando, @ — D
- . | ~
o
L‘ 211 , &
X xx‘———wxz; (:) 2 2
X o
. \l x
X1t e
Sensory unit - :”%,' R g
sensorgrid </
»_ Fepresenting any”
patem - @ L, (N
. :
Associator ur] Response unit
Figure 3-1 Original perceptron network. - o
\QFM&J Aep R T:R' o
] 0 3 1] .
Ny, & - -
I 3.2.2 Perceptron Leaming Rule KA 6 ack
In case of the perceptron learning rule, the learning signal is the difference berween gsired.and actual .. .

response of a neuron. The perceptron learning rule T explzingd 7s fotiows:

w.on

1L eg =D AR

Consider a finite “n number of input training vectors, wich their associated ra-rget-(-cfésired) values x(n)

:mc! H{r}, where “n” ranges fram I-to V. The targee is either +1 or ~1. The output 5" is obtained on the
basis of the ner inpur calculated and QWOH being applied over the net inpur.

1 Yin > g i
¥ =f(}'in) = 0 if -8 < Yin <@ \\j\l
=1 if yig<—0 J f(-\\ ~
DTS

\ e (—}\ \
{ﬂ ‘j'_f,"i
Ify ?‘2 A then S

The weight updarion in case of perceprron learning is as shown.

winew) = wlold) + asx (& ~ learning rate)
clse, we have

winew) = wlold)
The weights can be initialized at any values in_this mechod, The pesceptron rule conver

states thar “If there is 2 weight vector o 7EEATWT = #(n), for all ,

w1, the perceprron learning rule will converge 0 x

gence thearem
en for myswarting vector
3t gives the correct response for all

L

)

T

52 Supervised Leaming Network

Figure 3-2 Single classification perceptron network.

training parterns, and this learning takes place within a finite number of steps provided that the solution

exists.” "

I 3.2.3 Architecture

In the original perceptron network, the output obtained from the assoc'mﬂl.l_@lb_iga_rz_v_ecmr, and hence
thac outpur can be taken as input signal to the response unit, and classification can be performed. Here only
the weights berween the associator unic and the output unit can lmgemeen the
sensory and associator unirs are fixed. Asa result, the discussion of the nerwork is limited to a single portion.
Thmﬂa like the i inpuc unic. A slmple perceptron network architecture is shown in
Figure 3:2. I

In Figure 3-2, there ate 7 input neurons, 1 outpur neuron and a bias. The inpuc-layer and output-
layer neurons are connected through a directed communication link, which s associared with weights. The
goal of the perceptron net is [0 classify the jnput partern as a member or not a mcmber 1o a particular
class. e T

— 2005 =7 [LO-.»U(l |\f \PF u!--l(—“,y-f\ 64 5 redeadh B S r\ﬂ{
I 3.2.4 Flowchart for Training Process

The flowchart for the perceptron network training is shown in Figure 3-3. The nerwork has to be suirably
trained to obtain the response. The flowchart depicted here presents the flow of the training process.

As depicted in the flowchare, firs the basic initialization required for che training process is performed.
The entire loop of the training process continues until the training input pair is presented to the nerwork.
The training (weight updation) is done on the basis of the comparison berween the calculated and desired
output. The loop is terminated if there is no change in weight.

Ij.2.5 Perceptron Training Algorithrh for Single Output Classes

The perceptron algorithm can be used for either binary or bipolar input vectors, having bipolar targers,
threshold being fixed and variable bias. The algorithm discussed in this secrion is not particularly sensitive

to the injtial values of the weights or the value of the learning rate. In the algorithm diseussed below, inidally
the inputs are assigned. Then the net input is calculated. The output of the newwork is obrained by applying
the activation function over the calculated net inpur. On performing comparison over the calculated and

U v

bt kit m ey ot e m e

3.2 Percaptron Netwarks

53

Initialize weights & bias

!

Set a{Dto 1)

For
each

s:t

Yes

Activate input units
N=5

r

Calculate net inpul y,

'

Apply activation, abtain
y=1y,)

J

w(new) = wold} + atx,
b{new) = b(old) + art

wnew} = w,(old)
b(new) = biold)

[

[

If
weight
changes

Yes

No
r

Step]

Figure 3-3 Flowchart for perceprron network with single output.

54 Supervised Leaming Network

the desired ourput, the weight updation process is carried our. The entire nemwork is trained based on the
mentioned stopping criterion. The algorithm of a perceptron network is as follows:

[Step 0: Initialize the weights and the bias {for easy calculation they can be set to zero). Also initialize the I
leacning rate @(0 < a < 1). For simplicity a issereo 1.

Step 1: Perform Steps 2—6 until the final stopping condition is false.
Step 2: Perform Steps 3-5 for each training pair indicated by s:x.

Step 3: The inpur layer containing input units is applied with identiry activation functions:
% =5

Step 4: Calculate the output of the necwork. To do so, first obrain the net input:

n
Jin = b+ Zx,—w,—
i=1

where “#” is the number of inpurt neurons in the input layer. Then apply activations over the ner
input caleulated to obeain the outpuc:
1 fys> 0
}"=f(7fn)= 0 if—es]in <8
-1 ifpp<—0
Step 5: Weight and bias adjustment: Compare the value of the acral (caleulated) outpur and desired
(rarger) output.
Ify # ¢, then
wi{new) = w;(old) + asx;
bnew) = blold) +
else, we have
winew) = w;(old)
binew) = blold)

Step 6: Train cthe nerwork until chere is no weighe change. This is cthe stopping condition for the network.
If chis condition is not met, then start again from Step 2. J

The algorithm discussed above is not sensitive ta che initial values of the weights or the value of the
learning rate.

13.2.6 Parceptron Training Algarithm for Multiple Qutput Classes

For multiple output classes, the perceptron training algorithm is as follows:

I Step 0: Initialize the weights, biases and learning rate snitably.
Step 1: Check for stopping condition; if it is false, pecform Steps 2-6.

3.2 Parceptron Networks a5

Step 2: Perform Steps 3-5 for each bipolar or binary training vector pair s:4.

Step 3: Set activation (identicy) of each input uniti=1tom

Xj= 8

e

Step 4: Calculate output response of each output unjrj = 1 to f: First, the ner input is calculated as

¥ AR
"/,—. " r\r\- ‘/CJ;"‘\ 1’(0'. I’JJ‘
g Fing = b+ Y ity W s
N\ QC‘- .\;) .7 r~

\ . =t E’b' N (r'

N
Then activations are applied over the net inpur to calculate the outpus response:

1 ifyfnj> 7}
Y=flm) =14 0 -0 py<0
—=1 ifyu;<—8

Step 5: Make adjustment in weights and bias for j=lw mand i =10 n.

Ifz; # 3, then
wiflnew) = w,'j(old) + ayx;
bi{new) = gifold) + o
else, we have
wiilnew) = wlold)
bilnew} = £;{old)

Step 6: Test for the stopping condition, i.e., if there is no change in weights chen stop the training process,
else start again from Step 2. J

It can be noticed chat after training, the ner classifies each of the training vectors. The above algorithm is
suited for the architecrure shown in Figure 3-4.

I 3.2.7 Percepiron Network Testing Algorithm

It is best to tesc the nerwork performance once the training process is complete. For efficient performance

of the network, ir should be trained with more data. The testing algorithm (applicadion procedure) is as
follows:

I Step 0: The inirial weights to be used here are taken from the training algorichms (the final weights l
obrained during teaining).
Step I: For each input vector X to be classified, petform Steps 2-3.

Step 2: Set activarions of the input unit.

56

Supervised Leaming Network

X

X

Xn :
) - Yo

Figure 3-4 Nerwork archirecrure for perceptron nerwork for several output classes.

Step 3: Obtain the response of output unit,

n
Fin = Zx,-w; /\
i=1

1 if yip> 8

y=flr) =13 0 if -8 <y, <0 /’/\.

7

s '

=1 if yp <0

L

Thus, the testing algorithin tests the performance of network.

Note: In wgfmn network, it can be wsed for linear separability conceps. Here the separating line
may be based on the vilur of thiehald, re., the dhprshold used iy _getivation function must be a non-negative

value.

—

The condirion for separating the response from region of positive to region of zero is

wixy+up+b> 8

The condition for separating the respofise from region of zero to region of negative is
ToMm reglon Of Zero to region of negative |
et e —_— ————
wyxy + wyxy + b< —0
- e e, 22 < T :
The conditions above ate stated for a sifiglé-layer perceptron nerwork with two input neurons and one output
neuron and one bias.

/b

3.3 Adaptiva Linear Neuron {Adaline) 57

3.3 Adaptive Linear Neuron (Adaline) S

3.3.1 Theory ;

The unics with linear activacion fanction are called inear.units. A necwork with a single linear unit is called
an Adualine (adaptive linear neuron). That is, in an Adaline, the inpuc—output relationship is linear. Adaline
uses bipolar acrivation for its input signals and its targer outpur. The weights between the input and the
output are adjustable. The bias in Adaline acts like an adjustable weight, whose connection is from a unit
with acrivations being always 1. Adaline is a net which has only one output unit. The Adaline necwork may
be trained using delra rule. The delta rule may also be called as least mean square (LMS) rule or Widrow-Hoff
rule. This learning rule is found to minimize the mean-squared error berween the activation and the targer
value.

I 3.3.2 Delta Rule for Single Qutput Unit

The Widrow-Hoff rule is very similar o perceptton leaming rule. However, their origins are different. The
perceptron learning rule originates from the Hebbian assumption while the delea rule is derived from the
gradienc-descent method (it can be generalized to more than one layer). Also, the perceptron learning rule
stops after a finite number of fearning steps, but the gradient-descent approach continues forever, converging
only asymprotically to the solution. The delta rule updates the weights between the connections so as o
minimize the difference berween the net input to the output unir and the target value. The major aim is to
minimize the error over all training pacrerns. This is done by reducing the error for each pattern, one ara
time.
The delea rule for adjusting the weight of ith pattern (i = 1 to 1) is

Aw; = alt — yi)xi

where A w; is the weight change; @ the learning rate; x the vector of activation of inpur unit; 3, the net input
10 output unit, i, ¥ = 3 1| xw;i ¢ the targer outpuc. The delia rule in case of several output unirs for
adjuscing the weight from ith inpur unit to the jth outpuc unit {for cach partern) is

Awl}' = a(rj _yl'rrj)xi

l3.3.3 Architecture

As already stated, Adaline is a single-unit neuron, which receives input from several units and also from one
unit called bias. An Adaline model is shown in Figure 3-5. The basic Adaline model consiscs of trainable
weights. Inputs are either of the two values (4-1 or —1) and the weights have signs (positive or negative).
Initially, random weights are assigned. The net input calculated is applied to a quantizer transfer funcdon
{possibly acrivation function) that restores the output to +1 or 1. The Adaline model compares the acrual
output with the target output and on the basis of the training afgorithm, the weights are adjusted.

I 3.2.4 Flowchart for Training Process

The flowchart for the training process is shown in Figure 3-6. This gives a picrorial representation of the
nerwork training, The condirions necessary for weighr adjustments have ro be checked carefully. The weights
and other required paramerers are initalized. Then the necinputis calculared, output is obtained and compared
with the desired ourpue for calculation of error. On the basis of the error factor, weights are adjusted.

58 Supervised Learning Netwark 3.3 Adaptive Linear Neuron {Adaline)

Start

&
T
-
o
|

T o
Set initial values welghts
and blas, learning state

X
lva\‘
w.b a
W, ‘

(44
|
i

' Input the specified
Yin tojerance error £,
N
y
Adaplive e=!-Yyn Outputeror | 5 |
algorithm generator | i F°‘h Mo
i Learning supervisor : esa ?!
Flgure 3-5 Adaline model.
Yes
I 3.3.5 Training Algorithm Activate input layer units
. . . . x,=s,{i=1tc n)
The Adaline necwork training algorithm is as follows:
Etep 0: Weights and bias are set to some random values but not zero. Set the learning rate parameter o. l
' . L Calculate net input
Step 1: Perform Steps 2-6 when stopping condition is false. _ Y= b+ Txw,
Step Z: Perform Steps 3-5 for each bipolar training pair s+ ,l,
Step 3: Set activations for input unics i = 1 to 2.
Weight updation
=g w; (new) = w, (old) + e(t - y,)x;
b{new) = b(old) + a(t - yin)
Step 4: Calculate the net input to the output unit. l
z Caloulate error
Jin = b+ Z Xty E=% (“Y:'n)e
=]
Step 5: Update the weights and bias for i =1 o
wilnew) = wilold) + a (r — yin) x; No
blnew) = b (old) + e (£ — yim)
Step 6: If the highest weight change chat occurred during training is smaller than a specified toler- ; v
ance then stop the training process, else condnue. This is the test for stopping condition of a : =
nerwork. ‘ m
The range of learning rate ¢an be berween 0.1 and 1.0. Figure 3-6 Flowchare for Adaline training process,

-

60 Supervised Leaming Network

l3.3.6 Testing Algorithm

It is essential to perform the testing of a nerwork that has been trained. When training is completed, the

Adaline can be used to classify inpur patrerns. A step function is used to test the performance of the network.
The testing procedure for the Adaline netwerk is as follows:

I Step 0: Initialize the weights. {The weights are obeained from the training algorithm.} I

Step 1: Perform Steps 24 for each bipolar input vecror .
Step 2: Set the activations of the input units to x.

Step 3: Calculate the net inpur to the output unic:

Yn=tb+ fow.'
Step 4: Apply the activation function over the net input calculated:

1 ify 20
=121 gm0

L

E.4 Muitiple Adaptive Linear Neurons
I 3.4.1 Theory

The multiple adaprive linear neurons (Madaline) model consists of many Adalines in parailel with a single
output unit whose value is based on certain selection rules. It may use majcrity vote rule. On using this rule,
the output would have as answer either true or false. On the other hand, if AND rule is used, the ourput is
true if and only if borh the inputs are true, and so on. The weights that are connected from the Adaline layer
to the Madaline layer are fixed, positive and possess equal values. The weights berween the input layer and
the Adaline layer are adjusted during the training process. The Adaline and Madaline layer neurons have a

bias of excitation “1” connected to them. The aining process for 2 Madaline system is similar to that of an
Adaline,

l 3.4.2 Architecturp

A simple Madaline architecture is shown in Figure 3-7, which consists of “#” units of input layer, “#” units
of Adaline layer and “1” unit of the Madaline layer. Each neuron in the Adaline and Madaline layers has a bias
of excitation 1. The Adaline layer is present berween the input layer and the Madaline {outpur) layer; hence,
the Adaline layer can be considered a hidden layer. The use of the hidden layer gives the ner computational
capabilicy which is not found in single-layer nets, but this complicates the training process to some extent.

The Adaline and Madaline models can be applied effectively in communication systems of adaprive
equalizers and adaptive noise cancellation and other cancellacion circuits.

l3.4.3 Flowchart of Training Process

The flowcharr of the training process of the Madaline nerwork is shown in Figure 3-8. In case of training, the
weights berween the input layer and the hidden layer are adjusted, and the weighrs berween the hidden layer

3.4 Muitiple Adaptive Linsar Neurons) 61

Figure 3-7 Architecrure of Madaline layer.

and the outpur layer are fixed. The time raken for the training process in the Madaline nerwork is very high
compared 1o that of the Adaline network.

I 3.4.4 Training Algorithm

In this training algorithm, only the weights between the hidden layer and the inpu layer are adjusted, and
the weights for the output units ase fixed. The weights #i, vz, .. ., ¥ and the bias b that enter into outpur
unis Yare determined so that the response of unic ¥is 1. Thus, the weiphts entering Y unit may be raken as

b=

M= ==y =
and the bias can be raken as

by =

A —

The acrivacion for the Adaline (hidden) and Madaline (outpur) units is given by

1 ifx=0

FO=3_1 it e<o

Step 0: Initialize the weights. The weights entering the output unit are set as above, Set inicial small—l
random values for Adaline weights. Also set initial learning rate o.

Step 1: When stopping condition is false, petform Steps 2-3.
Step 2: For each bipolar training pair s:4, perform Steps 3-7.
Step 3: Acrivate input layer unics. For i =1 to n,

Xi = 35i

Step 4: Calculate net input to each hidden Adaline univ:

n
Zinj = bj+Zx,-w,-j, f=ltwom

i=}

62

Suparvisad Leaming Network

Or—

Initial & fixed weights
& bias betwaen hidden &
output layers

l

Set stall random value
weights for adaline layer.
Initialize o

Aclivate input units
x=s, i=lton

l

Find net inpu! to hidden layer
Zy=b+Exw, j=1tom

!

Calculate output
z=1{z

!

)

Calculater net input Lo output unit
m
Ya=b, "'E. ZJVJ

!

Calculate output
y=1fy}

®

Figure 3-8 Flowchart for training of Madaline,

3.4 Mulliple Adaptive Linear Neurons

63

Update weights on unit z,

net input is closest 1o zere.
b (new) = B,fold) + a2 {1~
winew) = w,{old} + ar{1~ M

whose

"}

Update weights on unils z, which
has positive net inpul.
b, {new) = b {old} + a{1-z,)
w.inew) = wlold} + a(1-Z,)x,

IEno
waight changes
{or) specitied
number of
epochs

Yes

{ Stop }

Figure 3-8 (Continued).

64 Supervised Learning Network

Step 5; Calculare output of each hidden unit:
i =f (zr'nj)
Step 6: Find the ourput of the nex:

m
Yu=t+ Ezivj

j=1
= £ {in}
Step 7: Calculate the error and update the weighs.
1. If # =y, no weight updation is required.
2. If # # yand £ = +1, update weights on z;, where net input is closest to 0 {zero):
bi(new) = ;lold) + o (1 — zinj)
wy{new) = wylold) -+ o (1 — Zim)X;
3. If ¢ # yand £ = —1, updare weights on units z; whose net input is posirive:
wig(new) = wiplold) + e (—1 — zimk) xi
bplnew) = bylold) + o (=1 — z;)

Step 8: Test for the stopping condition. (If thereis no weight change or weight reaches a satisfactory level,
or if a specified maximum number of iterations of weighe updation have been performed then
stop, or else continue).

Madalines can be formed wich the weights on the outpur unic set to perform some logic functions. If there
are only two hidden units present, or if there are more than two hidden units, then cthe “majority vote rule”
function may be used. /

I 3.5 Back-Propagation Network

3.5.1 Theory

The back-propagation learning algorithm is one of the most important developments in neural nerworks
{Bryson and Ho, 1969; Werbos, 1974; Lecun, 1985; Parker, 1985; Rumelhart, 1986). This nerwork has re-

awakened the sciencific and engineering community to the modeling and processing of numerous.quantitaive .

phenomena using nel newworks. This learning algorirﬁ'm—'i? applied luilayer feed-forward nerworks
consiang ohprocessing elements with continuous mm%;@muciawd
with back-propagation learning algorithm are alsg called back-propagation fiefwor (BPNs). For a given set
of training inpus-output pair, this algorithm provides a procedure for changing the weights in a BPN <o
classify the given input patrerns correctly. The basic concept for this weight updare algorithm is simply the
gradient-descent method as used in the case of simple perceptron networks with differentiable units. Thisisa
method where the errot is propagared back to the hidden unir. {Lhe aim of the neural network 1s to train the

net o achieve a balance berween the net’s ability to respond {mefforization) and its ability 1o give reasonable
responses to the input that is similar but not identir?:o the one that is used in training (generalization}.

{

3.5 Back-Propagation Netwerk 65

The back-propagation algorithm is different from other networks in respect to the process by whid
weights are calculated during the learning period of the nerwork. The general mﬂ
perceprrons is calculating the weights of the hidden layers in an efficient way that would result in a very small
or ze10 output error. When the hidden layers are incteased the nerwork training becomes more complex. To
updare weights, the error must be caleulated. The error, which is the difference berween the actual {ealculated)
and the desired {targer) ourpu, is easily measured at the’ourpur layer. It should be noted thar ar the hidden
layers, there is no direct information of the error. Therefore, other rechnigues should be used to calculate an
error at the hidden layer, which will cause minimization of the outpur error, and this is the ultimare goal.

The training of the BPN is done in three stages — the feed-forward of the input training patern, the
calculation and back-propagation of the error, and updation of weights. The testing of the BPN involves the
computation of feed-forward phase only. There can be more than one hifiden Tayer (more beneficial) bur one

!'uddcn layer is Suffictent. Even though the training is very slow, ence the nerwork is trained it can produce
its ourputs very rapidly.

l3.5.2 Architecture

A b_ack—propagation neural nerwork is a multilayer, feed-forward neural network consisting of an inpur fayer,
a hidden layer and an output layer. The neurons present in the hidden and outpur layers have biases, which
are the connections from the units whose activarion is always 1. The bias terms also acts as weights. Figure 3-9
shovf's the architecture of a BPN, depicting only the direction of information flow for the feed-forward phase.
During .the b@mlmmm& signals are sent in the reverse direction]

. The inputs ar¢Sent to the BPN and the outpurt obtained from the ner could beeither binary (0, 1) ot
bipolar (—1,+1). The activation function could be any function which increases monoronically and is alse
differentiable.

S
ﬁ\{ 1
N Y -

FlLure 3-9 Architecture of a back-propagation network.

66 Supervised Learning Network

I 3.5.3 Flowchart for Training Process

The flowchart for the training process using a BPN is shown in Figure 3-10. The terminclogies used in the
flowchart and in the training algorithm are as follows:
x = input training vector (X1, .- Xiv v, Xn)
= tarper ourpur vector (A, ...y fpsven s b~
o = learning rate paramerer ,
x; = input unit £. (Since the inpur layer uses identity activation function, the input and ourput signals
here are same.)
w; = bias on jehi hidden unit
wog = bias on th outpur unic
2z = hidden unit j. The net inplt to z; is

n
Zinj = byt inb';j
i=1
and the outpur is

7= f(zj)

& = ourput unit £ The net inpur to y; is

p
Yink = wo + Ezjwjk
j=1

and the output is

2= fyins)

8 = error correcrion weight adjusrmen for wy chat is due 10 an error ar outpuc unit y, which is
back-propagaced o the hidden unics char feed inco unit
8; = error correction weight adjustment for v thar is due to the back-propagation of error 1o the
- - . . - - T - —
hidden unitz;. ot l wers *H\-M—PE; Lo J-J
Also, ir should be noted thac the commonly used activation funcrions are binary sigmoidal and bipolar
sigmoidal acrivation functions (discussed in Section 2.3.3). These functions are used in the BPN because of

the following characreristics: (i} continuiry; (ii) differenriahilisy Git) nondecteasing Monotosny.

The range of binary sigmoid is from 0 to 1, and for bipolar sigmoid it is from —1 o +1.

l 3.5.4 Training Aigorithm

The error back-propagation learning aigorithm can be outlined in the following algorichm:

s

Step 1: Perform Steps 2-9 when stopping condition is false.

tep 0: [nitialize weights and learning rate (take some small random values).

Step 2: Perform Steps 3-8 for each training pair.

3.5 Back-Propagalion Network 67

Start

Initiglize the weights .
to some random values

o ——

For each
training pair
x t

Racsive input signal x; &
transmit to hidden unit

In hidden unit, calculate o/p,
n
Zigj = Voj + ZX¥y
z=lz), j=1top
i=1lon

R

N

Send Zlo the output layer units

Galculate output signal from
oufput [ayer,

P
Vi = Woi +y§1zi“?k

Ye= (Wi k=1tom

e

o

Targe! pair

é) ’ f enters

Ve

———

Figure 3-10 Flowchare for back-propagation network training,

Supervised Leaming Network

68

1

Compute error comection factor

fi= by F' e
{between output and hidden)

-

Find weight & bias comegtion term
AW = adez, Mgy = ady

Calculate errof term §
[between hidc;lnen and input)
Gy = ;::: 1‘5«“’%

&= &y I'(Zn)

Comptte change in weights & bias based
on &, avy= ad; x, Avy= af)

Update weight and bias on
outpul unit

wi (new) = wy (old) + Awy

Wy, (new) = wyy (old) + Awgy

Update weight and bias on
hidden unit
Viinew) =V; (old) + AV
Vyy (new) = VDJ {old) + &aVy;

if
specified
nurmber of epochs
reached or

b=V

Yes

Stop

Figure 3-10 (Continued).

3.5 Back Propagahon Network 69

T TN
{eed ﬁ;rwar pbm (Pbare I)J

Step 3: Each input unit receives input signal x; and sends it to the hidden unit (/ = 1 to n).
Step 4: Each hidden unit zi{f = 1 10 p) sums its weighted inpur signals to calculare net inpur:
— A .

—

n -
- gt
Zinjy = + wa.j SRS
i=1 v
Calculare ourput of the hidden unit by applying its activation functions over ziq; (binary or bipolar
sigmoidal activation function):

Fl

"

I'.j = f(ziny)
and send the output signal from the hidden unit to the input of outpur layer units. - }{
Step 5: For each output unit y; (¥ = 1 to m), calculare the net inpuc: A
— A

?
Yink = o + Ezj'u{;k)
j=1

and apply the activation function to compute outpur signal

e
Fb = f ()’l'nk)
e
Pack pra_paganan of error (Phase)y

L
Step-6: Each output unit ;¢ = l to) Teceives a targer paciern corresponding ro the input training

pateern and computes theferrorcorrecuoTTE L)
8= (& — ¥ Giomt)

The derivative f”(y;m) can be calcutated as in Section 2.3.3. On the basis of the calculated error
correction term, update the change in weights and blas i

Awy = abyz; ﬂww=a5:, At

Also, send §; to the hidden layer baékwards.. -

Step 7: Each hidden unit (z;, j = 1 1o p} sums its dela inputs from the outpur units:

m
Sij= D Skt
k=1 -
The rerm 8;; gers multiplied with the derivarive of f{ziy) to calculace the error reim:
8 =B (zin}) 7

The derivative f*(z;) can be caleulated as discussed in Section 2.3.3 depending on whether
binary or bipolar sigmoidal function is used. On the basis of the calculaved §;, update the change
in weights and bias:

Avff= Etajx,'; L\ﬂoj= aﬁj

70 Supervised Learning Natwork

. Weight and bias updation (Phase {ID):
Step 8: Each output unit (s, £ = 1 to m) updates the bias and weights:

wip(new) = wiplold)+Awy
wor{new) = wyglold)+ Aoy

Each hidden unit {z;, j = 1 to p) updares irs bias and weights:

vij(new) = vlold}+Avy
voj{new) = wj{old)+A g

Step 9: Check for the stopping condition. The stopping condition may be cerrain number of epochs
‘ reached or when the actual outpur equals the targer outpur. I

The above algorithm uses the incremental approach for updacion of weights, i.e., the weights ate being
changed immediaxely after a training partern is presented. There is another way of training called batch-mode
training, where the weights are changed only after all the training parterns are presented. The effectiveness of
two approaches depends on the problem, but batch-mode training requires additional local storage for each
connection to maintain the immediare weight changes. When a BPN is used as a classifier, it is equivalent to
the optimal Bayesian discriminant function for asymptotically large sets of statistically independent training
patterns.

The problem in this case is whether the back-propagation learning algorithm can always converge and find
proper weights for necwork even after enough learning, It will converge since it implements a gradient-descent
on the error surface in the weight space, and this will roll down the error surface to the nearest minimum error
and will stop. This becomes true only when che relation existing between the inpur and the oucpuc training
patcerns is deterministic and the error surface is dererministic. This is not the case in real world because the
produced square-grror surfaces are always at random. This is the stochastic nature of the back-propagation
algorithm, which is purely based on the stochastic gradient-descent method. The BPN is a special case of
stochastic approximation.

If the BPN algorithm converges at all, then it may ger stuck with local minima 2nd may be unable to
find satisfactory solutions. The randomness of the algorithm helps it to ger out of local minima. The error
funerions may have large number of global minima because of permurations of weights thar keep the nerwork
input—ouepue function unchanged. This*€auses the error surfaces to have numerous troughs.

I 3.5.5 Learning Factors of Back-Propagation Network

The training of 2 BPN is based on the choice of various parameters. Also, the convergence of the BPN is
based on some impertanc learning factors such as the initial weights, the lexrning raee, the updation rule,
the size and nawre of the training ser, and the architecture (number of layers and number of neurons per

layer).

3.5.5.1 Initial Weights

The ultimare solution may be affected by the initial Wc:lghts of a multilayer feed-forward necwork. They are
1muahz.ed at small random valucs Thc choice of ¢ i

t derermines how fast the nerwork converges.
T ed here may get sarurated

3.5 Back-Propagation Network 71

from the beginning itself and the system may be stuck at a local minima or at a very flar plateau at the starting

point itself. One method of choosing the weighﬂ is choosing It in the range
- [
Wﬂ%mtmgeﬂowd 10 processim he inirializa-
ion can also be done by a method called Nyugen=Widrow initialization. This type of initialization leads
1o faster convergence of network. The concept here is based on the geometric analysis of the response,of
hidden neurons te a single input. The method is.used for improving the leaming ability of the hidden unics.

The random inirialization of weights connecting inpur neurons to the hidden neurons is obrained by the
equation

u,_,(old)
yold)|

vy{new) =y o=—r "

where 7 is the average weight calculated for all values of 4, and the scale factor ¥ = 0. 7(AM" (“n* is the
number of input neurons and “P* is the number of hidden neurons).

3.5.5.2 Learning Rate o

The learning rate (o) affects the convergence of the BPN. A larger value of & may speed up the convergence
but might result in overshooting, while a smaller value of & has vice-versa effect. The range of o from 10~3
to 10 has been used Successkully for several back-propagation algorithmic experiments. Thus, a large learning

, fate leads to rapid learning but there is oscillation of weights, while the lower learning rate leads to slower

learning,

3.5.5.3 Momentum Factor

The gradient descent is very slow if the learning rte « is small and oscillates widely if @ is wo large. One
very efficient and commonly used method that allows a larger leammg rare withourt oscillations is by adding

a memenwm facror to the ncunaLgradlent descent method. ..
The fomentom factor s denoted by ne [0, 1] and the value of 0.9 is an:n used for the momenwum

factor. Alsg, this approach is more useful when some training data are ve rent from the majoriy
of dara. A momentum factor can be used with either paitern by pattern updating or batch-mode updat-

Mg, T case of batch mode, it has the effect of complete averaging over the parterns. Even though the

averaging is only partial in the pactern- by-pattern mode, it leaves some useful information for weight
updation.

The weight updation formulas used here are

wile+ 1) = wyle) + adp g4y [wj&(t) — wyle — 1]

Aw‘.(r+1)

and

Vrj(f'l')= v,-j(t) + lxajx,-+r; [U,}'(t) - vjj(t— 1)]

Agile+ 1)

The momentum factor also helps in fascer convergence.

RSP

ZmR3

i

.

72 - Supervised Leaming Network

3.5.5.4 Generalization

The best nerwork for generalization is BPN. A necwork is said to be generalized when it sensibly interpolates
with input nerworks that are new to the nevwork. When there are many trainable parameters for the given
amount of rraining dara, the nerwork leatns well but does not generalize well. This is usually called overfitring
or overtraining. One solution ro this problem is to monitor the error on the test set and terminate the training
when the error increases. With small number of trainable parameters, the network fails to learn the training

s .>" dara and performs very poorly on the test data. For improving the ability of the network to generalize from

A
i

Vo
£

S

—
o

a rraining daca set to a test dara set, it is desirable to make small changes in the iriput space of a pattern,
withour changing the outpur components. This is achieved by introducing variations in the inpurt space of

- - . 0 . - -—'—_-_-_-‘
training pauterns as part of the training set. However, compurationally, this method is very expensive. Also,

a net with large number of nodes is capable of membrizing the training set ar the cost of generalization, As a
result, smaller nets are preferred than larger ones.
3.5.5.5 Number of Training Daia

The training dara should be sufficient and proper. There exists a rule of thumb, which states that the training
data should cover the encire expected input space, and while training, training-vector pairs should be selected
randomly from the ser. Assume thar the Tipus space as being linearly separable into “L” disjoint regions
with their boundaries being part of hyper planes. Let “ T be the lower hound on the number of training
paccerns. Then, choosing 7 such thar 7/Z 3 1 will allow the network to discriminate pattern classes using
ﬁx?e"}:iecewise hyperplane parrmg some cases, scaling.or Mormalization has o be done o help

learning, . \ \

3.6.5.6 Number of Hidden Layer Nodes /</ 77 ,,/

If there exists more than one hidden layer in 2 BPN, thet] :h\.galw/l—ations performed for a single layer are
repeated for all the layers and are summed up ac the end. In case of att multilayer feed-Torward nerworks,
the size of 2 dden 5 vefy important. The numbBer of fiidden units required for an application needs
to be determined separately. The size of a hidden tayer is usually determ igq@;gge;i@;pt_ﬂl_lz. For a nerwork
of a reasonable size, the §ize of hidden no ply a Télatively small fraction of the mpat layef, [For
example, if the network does not converge to a solution, it may need mare hiddermodes—Cmriresihier hand,
if the nenvork converges, the user may try a very f_':c'\\'r/h_idden nodes and then setile finally on a size based on
overall system performance.

t,.s.e Testing Algorithm of Back-Propagation Network

The testing procedure of the BPN is as follows:

I Step 0: Inirialize the weights. The weights are taken from the training algorithm.
Step 1: Perform Steps 24 for each input vecror.
Step 2: Ser the activation of input unic for x; (f = 1 w0 7).

Step 3: Calculate the net input to hidden unit x and ics output. Forj =1 w0 p,

n
Zinj = v + Z Xilty
i=1

2= f (Z,',_-i)

3.6 Radial Basis Function Network 73

Step 4: Now compure the outpur of the outpur fayer unir. For k=1 to m,

p
Yink = ok + sz-w;x-
" 'j:l
74 = Fyink)

l Use sigmoidal activation funcrions for caleulating the output. J

/a

.

ls.s Radial Basis Function Network

I3.6.1 Theory

The radial basis function {(RBF) is a classification and functional approximation neural nerwork developed
by M.].D. Powell. The network uses the most common nonlineariies such as sigmoidal and Gaussian kernel
functions, The Gaussian functions are also used in regularization networks. The response of such a function is
positive for all values of y; the respanse decreases to O as [y| — 0. The Gaussian function is generally defined as

for =7

The derivarive of this funcrion is given by

FO =27 =270

The graphical representation of this Gaussian funcrion is shown in Figure 3-11 below.

When the Gaussian potencial functions are being used, each node is found to produce an identical ourput
for inpus existing within the fixed radial distance from the center of the kernel, they are found ta be radically
symmetric, and hence the name radial basis function network. The encire network forms a linear combination
of the nonlinear basis function.

i

1 T T T - ¥
-2 -1 0 1 2

Figure 3-17 Gaussian kernel funcrion.

4 Supervised Leaming Network

Input Hidden Qutput
layer layer (RBF) fayer

Figure 3-12 Architecture of RBE

I 3.6.2 Architecture

The architecture for the radial basis funcrion network (RBFN) is shown in Figure 3-12. The archirecture
consists of two layers whose outpur nodes form a linear combination of the kernel (or basis) functions
compured by means of the RBF nodes or hidden layer nodes. The basis unction {nanlinearity) in the hidden
layer produces a significant nonzero response to the input stimulus it has receitved only when the input of it

falls within a small localized region of the inpur space. This network can also be called as lacatized receprive
field necwork.

Hrs.s.S Flowchart for Training Process

The flowchart for the training process of the RBF s shown in Figure 3-13 below. In this case, the center of
the RBF functions has to be chosen and hence, based on all parameters, the outpur of network is calculated.

I 3.6.4 Training Algorithm

The training algorithm describes in detail all the calculations involved in the training process depicted in the
flowchart. The training is started in che hidden layer with an unsupervised learning algorithm. The training is
continued in the output layer with a supervised learning algorithm. Simultaneously, we can apply supervised

learning algorithm to the hidden and oucput layers for fine-tuning of the nerwork. The training algorithm is
given as follows.

I Step 0: Ser che weights to small random values,
Step It Perform Steps 2-8 when the stopping condirion is false.
Step 2: Perform Steps 3-7 for each input.

Step 3: Each inpur unit {x; for all / = 1 1o n} receives input signals and transmits to the next hidden layer
unit.

3.6 Radial Basis Funclion Network

75

Start

Set weights.to small
random values

Complete
radial basis tunction

1

Select centers of RBF funclions;
sufficient number has to be
selected to ensure adequate sampling

|

Calculate oulput of
hidden layer unil

1

Sel output layer weighls to
small random values

l

Complete the output
of the neural network

l

Find error

No

Figure 3-13 Flowcharr for the training process of RBE

76

Supervised Leaming Network

-Step 4: Calculate the radial basis funcrion.

Step 5: Select the centers for the radial basis function. The centers are selected from the sex of input
vecros. It should be noted thar a sufficient number of centers have to be selected to ensure
adequate sampling of the input vector space.

Step 6: Calculave the output from the hidden layer unit:

exp l:— Zr: (i — 35-';)2]
i=1

o}

vil{x) =

where X is the center of the RBE unit for input variables; a; the width of ith RBF unig; xji the
jth variable of input paceern.

Step 7: Calculare the output of the neural network:

]
Yuer = Z wimyi(xi) + wy

=1

where £ is the number of hidden layer nodes (RBF function}; 3, the output value of mech node in
output layer for the nch incoming pattern; wiy the weight berween fth RBF unit and mth ourpur
node; ry che biasing term at nch output node.

Step 8: Calculate the error and test for the stopping condition. The stopping condition may be number
l of epochs or to a certain extent weighe change.

Thus, 2 nerwork can be trained using RBEN.

Ij.? Time Delay Neural Network

The neural network has to respond 1o a sequence of parerns. Here the nerwork is required o produce a
particular ourpur sequence in response ta a particular sequence of inpucs. A shik regiscer can be considered
as a tapped delay fine. Consider a case of a multilayer perceptron where the tapped ourputs of the deiay line

are applied 10 its inputs. This type of nerwork constitues a time delay neural nerwork (TDNNY. The output
consists of a finite temporal dependence on its inputs, given as

Ul = Flxteh x(e — 1), ... x{e—)]

where £is any nonlinearity function. The multilayer perceptron with delay line is shown in Figure 3-14.

When the funcrion Uf{y) is 2 weighred sum, then the TDNN is equivalent to a finite impulse response
filcer (FIR). In TDNN, when the output is being fed back through a unic delay into the input layer, then the
ner computed here is cquivalent to an infinite impulse response (IR} filter. Figure 3-15 shows TDNN with
outpur feedback.

Thus, a neuron with a tapped delay line is called 2 TDNN unit, and a network which consists of TDNN
units is called a TDNN. A specific application of TDNNs is speech recognition. The TDNN can be trained
using the back-propagation-learning rule with a2 momenrum facror.

ey

3.8 Functional Link Networks 77

—xﬂq Delay line

| 0| ee. o |dew

Multilayer perceptron

l

[o]{3]
Figure 3-14 Time delay neural network {FIR filker),

r

1)

——» Delay line Delay fine

()| Hdt-n) | olt-n) [oft-1)

Y Y 4
Multitayer perceptron

j
o)
Figure 3-15 TDNN with outpuc feedback (IR filter).

l 3.8 Functional Link Networks

These networks are specifically designed for handling linearly non-separable problems using appropriat.e
input representacion. Thus, suitable enhanced representation of the inpur daca has to be feund our. Thfs
can be achieved by increasing the dimensions of the input space. The inpur data which is expanded is
used for rraining instead of the acrual inpur data. In this case, higher order input terms are chosen so that
they are linearly independent of the original patern components. Thus, the input representation has been
enhanced and linear separability can be achieved in the extended space. One of the functional link model
networks is shown in Figure 3-16. This model is helpful for learning concinuous functions. For this model,
the higher-order input rerms are obtained using the orthogonal basis functions such as sin 7, cos 7, sin 2rex,
cos 271y, etc.

The most common example of linear nonseparabilicy is XOR problem., The funcrional link netwarlks help
in solving this problem. The inputs now are

x] x xixz2 #

-1 -1 1 1
-1 1 -1 -1
1 -1 -1 -1

11 1

78 . i
Supenvised Learning Network

Figure 3-17 The XOR problem,

Thus, it can be easily seen thar the functio
The funcrional link nerwork consists of onl
instead of the generalized delta learning rul
link network is faster than thar of the BPN,

nal link nerwork in Figure 3-17 is used for solving this problem.
y one llayer. therefore, it can be trained using delta learning rule
e used in BPN. As a resulr, the learning speed of the functional

I 3.9 Tree Neural Networks

The tree neural nerworks {TNNs) are used for (he- 1t

3 pattern recognition problem. The mai i
necwork s to use a small mulrilayer neural neowork at each deciEi ; o by e
tree for extracting the non-linear features, TNNs co
appropriate local fearures ar the different Jev
Figure 3-18.

The decision nodes are present as
terminal node has class label denated by 2
l(sgh;{ung rule in chf: form of f(x) < 8. The rule determines whether the patrern moves to the right or to the
ek, Here, £(x) indicates the associated fearure of patrern and “6" s the threshold. The partern will be given
the class label of the terminal node on which it has landed. The ,

X classification here is based on the fact that
the appropriate features can be selected at different nodes and levels in the tree, The output feature y = £(x)

on-making node of a binary classification
mpletely exteact the power of tree classifiers for using
els and nodes of the tree. A binary classification tree is shown in

n|

3.10 Wavelat Neural Networks 79

= =

Figure 3-18 Binary classification tree.

obtained by a multilayer necwork at a particular decision node is used in the following way:

x directed to left child node ¢, ify< 0
x direcred 1o right child node ¢g, ify > 0

The algorithm for a TNN consists of two phases:

1. Tree growing phase. In this phase, a large tree is grown by recursively finding the rules for splirting until
all the terminal nodes have pure or nearly pure class membership, else it cannot splic further.

2. Tree pruning phase. Here a smaller tree is being seleced from the pruned subrree to avoid the overfilling
of data.

The training of TNN involves owo nested optimization problems. In the inner optimization problem, the
BPN algorithm can be used to train the necwork for a given pair of classes. On the other hand, in outer
opeimization problem, a heuristic search method is used to find a good pair of classes. The TNN when cested
on a character recognirion problem decreases the error race and size of the trec relative to thar of the standard
classification tree design methods. The TNN can be implemented for waveform recognition problem. It
obtains comparable error rates and the training here is faster than che large BPN for the same application.
Also, TNN provides a scructured approach to neurat necwork classifier design problems.

Ij.lo Wavelet Neural Networks

The waveler neural necwork (WNN) is based on the waveler cransform theory. This neework helps in
approximaring arbitrary nonlinear functions. The powerful tool for function approximation is waveler
decomposition.

Let f(x) be a piecewise continuous function. This function can be decomposed inco 2 family of functions,
which is obcained by dilating and cranslating a single waveler function ¢ : R — Ras

fe =3 wda D] (Dite— 2]

=1

where D; is the diag(d}), 4; € RF are dilation vectors; D; and #; are the translacional vectors; der [] is the
determinant operator. The waveler funcrion ¢ selecred should satisfy some properties. For selecting ¢ : R —
&, the condition may be

¢ = (x1)--dblxn) forx=(x 2 ..., %)

— *

80 Suparvisod Learning Network

+ Ry Dy ——| @ W, —_—
. ¥
- ; : ; : \
. .
Input () = R, —| D; = ¢ W @ 7
QOutput

@ R, -—| D,] W,

Figure 3-19 Waveler neural nerwork.

where

) e {x) = —xexp (%/)

is called scalar waveler. The network structute can be formed based on the waveler decomposttion as

n

Fd =) wid[Dilx—] +§

i=l1

where 7 helps 10 deal with nonzero mean functions on finice domains. For proper dilation, a rotation can be
made for berter nerwork operation:

n

S =) wip [DiRitx - 1]+

i=1

where R; are the rotation matrices, The nerwork which performs according ta the above equarion is called
wavelet neural nerwork. This is a combination of translation, rotarion and dilacion; and if a waveler is lying on

the samellmc, then it is called wavelon in comparison to the neurons in neural networks, The wavelet neural
nenwork is shown in Figure 3-19,

I3.11 Summary

In this chapter we have discussed the supervised learning nerworks. In most of the dlassification and recognition
problems, the widely used networks are the supervised learning networks. The architecture, the learning rule,
flowchare for training process-and training algorithm are discussed in detail for percepiron network, Adaline,
Madaline, back-propagation nerwork and radial basis function nerwork. The perceptron nerwork can be
trained for single output classes as well as multiouput classes. Also, many Adaline nerworks combine rogether

3,12 Solved Problems * 81

to form a Madaline nerwork. These networks are trained using delea learning rule. Back-propagatdion network
is the most commonly used network in the real time applications. The etror is back-propagated here and is
fine tuned for achieving better performance. The basic difference berween the back-propagation network and
radial basis function nerwork is the activation ﬁ.mct‘ion_‘ used. The radial basis function network mostly uses
Gaussian activation function. Apart from these networks, some special supervised learning nerworks such as
time delay neural necworks, functional link nerworks, tree neural networks and wavelet neural networks have

also been discussed.

I 3.12 Solved Problems .

1. Implement AND function using perceptron net-

_~"works for bipolar inputs and targets.
P polar inputs and targe

Solution: Table T shows the truth table for AND
funcrion with bipolar inpurs and targets:

Tahle 1

x L] t
1 1 1
1 -1 -1

-1 1 -]

—1i -1 -1

The percepiron nerwork, which uses perceptron
learning rule, is used to main the AND function.
The nerwork architecrure is as shown in Figure 1.
The input patterns are presented to the nerwork one
by one. When all the four inpur parterns are pre-
sented, then one epoch is said to be completed. The
initial weights and threshold are set to zero, ie,
w) = wy = b = 0and # = 0. The learning rate
@ is ser equal 10 1.

)

Figure 1 Perceptron nerwork for AND function.

For the first input parern, x; = L2z = 1 and
£ = 1, with weights and bias, 21 = 0, & = O and
b=10:

* Calculate the net input

Yin = b+ 2y + 020
=0+1x0+1x0=0

* The output y is computed by applying activations
over the net input calculared:

1 ifym>0

y=f(yin)= 0 lfym=0 i
-1 f yp<0

U

Here we have taken 9_'_=m(_lz]l-lcncc, when, yin = 0,

y=0. :

* Check whether t = y. Here, t = 1and y = 0, 50
t # y, hence weight updation takes place:

wi{new) = wi{old) + an;

wi(new) = wifold) + ot =0+ 1 x1x1=1

walnew) = unlold) + aoy =0+ 1 x1x1=1
blnew) = blold) + ar=0-+1x1=1

Here, the change in weights are

Aw) = ortxp;
Awy = aex;
Ab= at

The weights wy = 1, wp = 1, b = 1 are the final
weights after firstinpur pattern is presented. The same
pracess is repeated for all the input patterns. The pro-
cess can be stopped when all the targets become equal
to the calculared output or when a separating line is
obrained using the final weights for separating the
positive resporses from negative responses, Table 2
shows the training of perceptron nerwork until ics

82

Supervised Leaming Network

Table 2
Caleulated Weights
ate .
]nput_ Targer Net input output Welght changes wy wy b
X x 1])) Awy Awn Ab (0 0 0
EPOCH-1
111 1 0 0 1 1 1 1 1 1
T -1 1 -1 1 1 -1 {1 -1 0 2 0
-1 1 1 -1 2 1 1 -1 -1 1 1 -1
-1 -1 1 -l -3 -1 0 0 o 1 1 -i
EPOCH-2 —_—
1 1 1 1 1 1 0 0 0 I 1 -1
1 -1 1 -1 -1 -1 0 0 0 1 1 -1
-1 1 1 -1 -1 -1 0 0 0 I 1 -1
-1 -1 1 ~1 -3 -1 0 0 0 1 1 -1
targer and calculated outpue converge for all the - 4

patterns.
The final weights and bias after second epoch are

w=lLu =1, b=-1
Since the threshold for the problem is zero, the

equation of the separaring line is
21 b

X=——x— —
)

Here

wix +unxat+ b= 8
wx) +ugxa+ b= 0

Thus, using the final weights we obtain
1 (-1)

X =——x - -
1

‘7"_-____,,-—\1
x=-—-x +1

It can be easily found that the above straight line
separaes the positive response and negative response
region, as shown in Figure 2.

The same methodology can be applied for imple-
menting other logic functions such as OR, AND-
NOT, NAND, ete. If chere exists a threshold value
& # 0, then two separarting lines have to be obtained,
i.c., one to separate positive response from zero
and the other for separating 2ero from the negative
response.

(-1, i}

-,

(SR

%

Figure 2 Decision houndary for AND funcrion
in percepuron training {8 = 0).

ymplcmem OR function with binary ihputs and
"~ bipolar rargess using perceptron traiming algo-
rithm upro 3 epochs,

Solution: The wuth rable for OR function with
binary inputs and bipolar eargets is shown in Table 3.

Table 3

X1 X2 t
1 1 1
| 0 1
0 I 1
0 0 -1

3.12 Solved Problems

83

Figure 3 Perceptron nerwork for OR function.

The perceptron nerwork, which uses perceptron

learning rule, is used to train the OR function.
The nerwork architecture is shown in Figure 3.
The inirial values of the weights and bias are taken

a5 Zero, 1.e.,
W = wny = b= 1]

Also the learning rare is 1 and threshold is 0.2. So,
the acrivation function becomes

1 if yju> 0.2 ”

0 if —02 <y, <02
—_—

The necwork is trained as per the perceptron craining

algorithm and the steps are as in problem 1 (given for

firsc partern). Table 4 gives the nerwork training for
3 epochs.

f (yirr) =

The final weights at the end of third epoch are
w=2un=1b=-1

Further epochs have to be done for the convergence
of the network.

' yud/ﬁe weighrs using perceptron nerwork for

ANDNOT function when all the inputs are pre-
sented only one time. Use bipolar inputs and
rargets.
Solution: The truth table for ANDNOT function is-
shown in Table 5.

Table 5

x| x t
1 1 -1
1- -1 1

-1 1 -1

-1 -1 -1

The necwork architecture of ANDNOT function is
shown as in Figure 4, Let the initial weights be zero
and o = 1,8 = 0. For the first input sample, we
compute the ner input as

n
ym=b+2x.'wi=5+x1tw + xun
=1

=04+1x04+1x0=0

Table 4
Weights
Calculated , T

___Tlipit_ Targer Netinput output Weighe changes w, wr b
X1 xn 1 6] .} W Awy, Auwn Ab {0 0 0)
EPOCH-1

1 H I 1 0 0 1 1 1 1 1 1

1 0 1 1 2 1 0 0 0 1 1 1

¢ 1 1 I 2) 0 0 0 1 1 0

0 0 l -1 1 1 0 0 -1 i 1 0
EPOCH-2

1 1 1 1 2 i 0 0 0 1 1 0

I 0 1 1 1 1 0 0 0 I 1 0

0 1 1 1 1 1 Q 0 0 1 1 0

0 0 1 ~1 0 0 0 0 0 1 1
EPOCH-3

1 1 1 1 1 1 0 0 0 1 1 -1

1 0 1 1 0 0 1 0 1 2 1 0

0 1 1 1 1 1 0 0 0 2 1 0

0 0 1 -1 0 0 0 0 -1 2 1 -1

84 Supervised Leaming Network
b For the third input sample, x; = -1, 2 = 1,
£ = —1, the ner input is calculated as,
X W‘

Figure 4 Neowork for ANDNOT function.

Applying the activarion function over the net input,
we obtain

1 ifya> 0
y=f(yin)=,] IF‘OEJ‘MEO
—1 ifyin<—0

Hence, the output y = f{yin) = 0. Since £ # y, the

new weights are compured as
wi(new) = wilold) + @og =0+ 1 x—-kx1=—
un(new) = wnfold) + ety =0+ 1 x ~1x1=-1
blnew) = blold) + ar=04+1x -1=--1
The weights after presenting the firse sample are
w=[-1-1-1]

For the second inpur sample, we calculate the net
input as

7
y,',,=!'7+2x,-w;= b+11w| + xpun
=1
=—14+1x-14(—1x—1)
=—-1-14+1=-1

The outpur y = fly;,) is obrained by applying
activation function, hence y = —1.
Since £ # y, the new weights are calculated as

w{new) = wilold} + e =-1+1x1x1=0
anlnew) = wglold) + g =—14+1x1x—-1=-2
b(new) = blold) + ar=—14+1x1=0

The weights after presenting the second sample are

w=[0 -2 0]

n
Yin=b+ Y xwi = b+ xw + o
=1

=04+-1x0+1x-2=0+0-2=-2

The output is obtained as y = f{yin) = —1. Since
£ = y, no weight changes. Thus, even afiier presenting
the third input sample, the weights are

w=[0 -2 0]

For the fourth input sample, x; = —Lx = -1,
t = —1, the net input is calculated as

n
Yin=b+ inw.' =b+xw +awm

i==l
=04+—-1x0+(-1x-2)
=04+0+2=2

The output is obtained as y = f {yin) = 1. Since
¢ # y, the new weights on updating are given as

wi{new) = wi{old) + ao =0+ 1x~1x -1 =1

wpl{new) = wplold) 4 e = ~2+ 1 x~1x-1=-1
blnew) = bold) + ore =041 x 1= -1

The weights after presenting fourth input sample are

w=[l -1 —I1]

One epoch of training for ANDNOT funcrion using
perceprron nerwork is tabulared in Table 6.

Table 6
Input ~ Calculaced _ Weights
Target Netinput output wy b
xoml O () »m o 0
1 11 -1 0 0 -1 -1 -1
1-11 1 -1 -1 g-2 0
-1 11 -1 - =2 -1 0-2 0
-1-11 -1 2 I -1 -1

3.12 Solvad Prablema

4. Find the weights required to perform the follow-
ing classification using perceptron network. The

vectors {1, 1,1, 1)and (=1, 1 =1, — 1) are belong- -

ing to the class (so have targec value 1), vectors
(1, 1,1, —1}and (1, -1, —1, 1) are not belong-
ing to the class (so have rarget value —1). Assume
learning rate as 1 and initial weighes as 0.

Solution: The rru(h table for the gwen vectors is gwen
in Table 7.~

Letw; =Swp == w = b-—-‘Dandthe
lm?ng raie @ = 1. Since the threshold @' = 0.2, so

the detivation function is

1 if yp> 02
y=1 0 if 02 <y,<02
-1 if JYin = —-0.2

The net input is given by

Fin= b+ xw +xun +x3un
+ X414

The training is performed and the weights are tabu-
lated in Table 8.

85
Tabla 7
Input

% n x3 x4 & Target(n)
1 1 1 1 1 1
-1 1 -1 ~1 1 1

1 1 1 ~1 1 -1

1 -1 -1 1 1 -1

Thus, in the third epoch, all the calculared ourpurs
become equal to targets and the nerwork has con-
verged. The nerwork convergence can also be checked
by forming separating line equations for separating
positive response regions from zero and zero from
negative response region.

The network architecture is shown in Figure 5.

5. Classify the two-dimensional inpur partern shown
- in Figure 6 using perceptron network. The sym-
bol “*” indicates the data representation to be -+1
and “+” indicates data to be — 1. The parterns are
I-E. For pattern I, the targec is +1, and for E, the
rarget is — 1.

Table 8
Weights

Inputs Target Netinput Ouipur Weight changes (w1 wa wn w4 b)
i m x5 x b (8 (y,-n) (» (Awy Awp Awy Awg ARy (0 0 0 0 0
EPQCH-1
{1 1 1 11 1 0 0 1] 1 1 1 11 111
-1 1 -1 -11 1 -1 -1 -1 1 -1 -1 1 02 002
(1 1 1 -1 -1 4 i -1 -1 -l 1 =1 =1 1 -1 1 1
(1 -1-1 113 -1 1 1 -1 1 1 -1 -1 =2 2 0 9
EPOCH-2
{1 1 1 11 i 0 0 1 1 1 1 1 -1 3 111
-1 1 -1-11 1 3 1] 0 -13 111
(1 1 1 -11) —1 4 1 -1 -1 -1 1 -1 =22 02 0
(1-1-1 11D -1 -2 ~1 6o o0 0 o0 0 -22 0209
EPOCH-3
{1 1 1 1) 1 2 1 0 0 0 0 0 =22 020
-1 1 -1-11 1 2 1 ¢ 0 0 0 0 -22 020
(1 1 1211 =1 -2 ~1 0 0o 0 0 0 -22 020
(1 -1 -1 11 -1 -2 -1 0 0 0 0 0 -22 020

86

Supervised Loamning Network

¥ » K LI I |

s * » LI I

L2 * e 2
o i<

Figure 6 I-F daca representation.

Solution: The training patterns for this problem are
tabulared in Table 9.

Table 9

Input
Pattern xq x2 x3 %4 x5 X x; x3 sy 1 Targer {3)
1 111~-11-111 11 1
F 111 11 v1-1-11 -1

The initial weights are all assumed to be zero, ie.,
8 = 0and a = 1. Theacrivation function is given by

—
i

iy 0)
y={ 0 f-0<p =0 |
: ~1 ifyy<—0 1[

For the first input sdmple, &y = [1 1 L—11-111
1 1, ¢ = 1, the net input is calculated as

9
Yin = b+ z.r,'w;
;=1

= b+ 2wy + xqwy + B3w3 + xtq + x5
+ xgiwg + 7wy + gy + Xk
=0+1x04+1x0+1x0+(-1)x0
FIx0+(-)x04+1x04+1x04+1x0
Jin=10
Therefore, by applying the activation function the
output is given by y = f (yj) = 0. Now since £ # y,
the new weights are computed as
wy(new) = wy{old) + aty =0+ 1x1x1=1
wnlnew) = wplold) + ey =0+ 1x1x1=1
wilnew) = walold) + ety =0+ 1 x1x1=1
wy(new) = wilold) + aog =0+ 1 x I x —1=~1
ws{new) = wilold) + ats =0+ 1x1Ix1=1
wi{new) = wglold) + apg =0+ 1x I x —1=-1
wy(new) = wylold) + ey =0+ 1x1x1=1
wylnew) = uglold) + epg =04+1x1x1=1
wolnew) = wolold) 4 e =0+1x1x1=1
blnew) = blold) + ar=0+1x1=1

The weights after presenting first input sample are
w=[111-11-11111]

For the second inpursample, xp ={1111111 -1
—11}, = —1, che nec inpuc is calculared as

9
Yin = b+ inwr'

i=l
= b+ xyw) + xgwn + x3a + xawq + X5
+ xgiwg + iy + xgvg + xouy
=i+Ix1+1xl+ix1+Ix-1+1x1
+lx=I+1x1+(-1x 1+{-1x1
Fa=12
Therefore the outpur is given by y = £ (i) = L.
Since ¢ % y, the new weights are
wy(new) = wyleld) + o =1+ 1x~1x1=0
wnpnew) = unfold) + ¢z =1+1x -t x1=0
wilnew) = wylold) -+ g = L +1x -1 x1=0
wa{new) = wglold) + emg = —1+1x—ix1=-2

3.12 Soived Problems

87

ws{new) = welold) + amxs =1+1x-1x1=0

wglnew) = wglold) + ey =-1+1x-1x1=~2

wyinew) = wylold) + ey =T+1x-1x1=0

wglnew) = wylold) + g =1+ 1x -1 x -1 =2

wolnew) = wolold) + wog =141 % “1x-1=2
blnew) =blold) + ar=14+1x -1 =0

The weights after presenting the second input sam-
pleare ¢

w=[000 —20 —20220]

The nerworkarchitecture is as shown in Figure 7. The
nerwork can be further trained for ics convergence.

S Figure 7 Network archisecrure.

/

6. Implement OR funcrion with bipelar inputs and
targets using Adaline nerwork.

Solution: The truth rable for OR Function with
bipolar inpurs and targers is shown in Table 10.

Table 10

x] X 1 t
1 1 1 I
1 -1 1 1

-1 1 1 1

-1 -1 1 -1

Inicially all the weights and links are assumed te be
small random values, say 0.1, and the learning rare is
also ser to 0.1. Also here the least mean square error

" may be set. The weights are calculated uncil ehe least

mean square error is obrained.

The initial weights are taken to be wy = u =
& = 0.1 and the learning rate o = 0.1, For the fiest
input sample, x| = 1,23 = 1, t= 1, we calculate the
net input as

2
Yin=b+ ix,'w,' = b+Zx;w,-
=i

i=]
= b+ xymw + xun
=01+1x0141x01=03

Now compute (£ — i) = (1 = 0.3) = 0.7. Updaring
the weights we obrain,

wi{new) = wi{old} + et — yir)x;

where e(f — yulx; is called as weighe change Aw;.
The new weights are obtained as

wi(new} = wi(old)+ Ay = 0.1 401 x 0.7 x 1
=014007=0.17
wa(new) = enlold)+Aw, = 0.1
401 x07x1=40.17
b(new) = blold)+Abs=0.1+ 0.1 x 0.7 =0.17

where

Awy = a(f—)'frr)xl
Awy = ot _)’iu)-‘ﬂ
Ap = “(r"]in)

Now we calculace the error:
E=(r—ym)? = (0.7 = 049

The final weighes after presenting Arsc inpuc sam-
ple are

w=1[017 0.17 0.17]

and error £ = .49,

RN

88

Supervised Leaming Network

These calculations are performed for all the input
samples and the error is calculated. One epoch is
" completed when all che inpur pareerns are presented.
Summing up all the errors obtained for each input
sample during one epoch will give the total mean
square error of that epoch. The nerwork training is
continued until this error is minimized 1o a very small
value.

Adopting the mechod above, che nerwork training
is done for OR function using Adaline nerwork and
is tabulaced below in Table 11 for & = 0.1.

The total mean square error after each epoch is
given as in Table 12.

Thus from Table 12, it can be noticed thar as
training goes on, the error value gets minimized.
Hence, further training can be continued for fur-
ther minimization of error. The necwork architecture
of Adaline network for OR function is shown in
Figure 8.

Table 12

Epoch Total mean square error
Epoch 1 3.02

Epoch 2 1.938

Epoch 3 1.5506

Epoch 4 1417

Epoch 5 1.377

X
2z ,

W

_os®
>

Figure 8 Nerwork archirecrure of Adaline.

Table 11
Net) Weights

_fnputs Target input Weight changes w un & Error
W o2l ¢ Voo (E=yy) Aw Amp AF (01 01 01) (¢~
EPOCH-1 -

t 11 b 0.3 0.7 0.07 0.07 007 017 017 017 0.49
=11 1 0.17 0.83 0083 0083 0083 0253 0087 0253 069
-1 11 1 0.087 0913 —0.0913 00913 00913 0.1617 0.1783 0.3443 0.83
-1 -1t 1 0.0043 —1.0043 0.1004 0.1004 —0.1004 0.2621 0.2787 0.2439 1.0l
EPOCH-2

1 11 1 0.7847 02153 0.0215 00215 0.0215 0.2837 0.3003 0.2654 0.046
1 -11 1 0.2488 07512 07512 —0.0751 0.0751 0.3588 0.2251 0.3405 0.564
-1 11 1 0.2069 0.7931 -0.7931 0.0793 0.0793 02795 0.3044 0.4198 0.629
-1 -11 1 -0.1641 —0.8359 00836 0.0836 --0.0836 0.3631 0.388 0.336 0.699
EPOCH-3

1 11 1 1.0873 —0.0873 —0.087 -0.087 -0.087 0.3543 0.3793 03275 0.0076

1 =11 1 03025 +0.6975 0.0697 —0.0697 0.0697 0.4241 0.3096 0.3973 0.487
-1 11 1 02827 07173 —0.0717 0.0717 0.0717 0.3523 0.3813 0.469 0.515
-1 -11 I —0.2647 —0.7353 00735 0.0735 ~0.0735 0.4259 0.4548 0.3954 0.541
EPOCH-4

I 11 1 1.2761 —0.2761 —0.0276 -0.0276 —0.0276 0.39383 04272 0.3678 0.076

1 -11 1 03389 0.6611 0.0661 —0.0661 0.066] 0.4644 0.3611 0.4339 0.437
-1 11 1 03307 0.6693 —0.0669 0.0669 0.0699 0.3974 0.428 05009 0.448
-1 -11 1 03246 —-0.6754 00675 00675 —0.0675 0.465 0.4956 04333 0.456
EPQCH-5

1 11 1 1.3939 —0.3939 —0.0394 —0.0394 —0.0394 0.4256 0.4562 0.393 0.155

1 -1 1 1 03634 06366 00637 —~0.0637 00637 0.4893 0.3925 0.457 0.405
-1 11 i 0.3609 0.6391 -0.0639 00639 0.0639 0.4253 0.4654 05215 0.408
-1 -1 1 1 —03603 —0.6397 0.064 0.064 —0.064 04893 0.5204 04575 0.409

|

3.12 Solved Problems

7. Use Adaline nerwork to train ANDNOT function
with bipelar inputs and targets. Perform 2 epochs
of training.

Solution: The truth wble for ANDNOT function
wich bipolar inputs and rargers is shown in Table 13.

Table 13
x1 x 1 ¢
1 1 1 -1
i -1 1 1 ‘
-1 1 I -1
-1 -1 1 -1

Initially the weights and bias have assumed a random
value say 0.2. The learning rate is also set 1o 0.2. The
weights are calculated until the least mean square error
is obrained. The initial weightsare w; = up = b =
0.2, and & = 0.2. For the first input sample x; = 1,
xz = 1, £ = —1, we calculate the net input as

Fin = b+ x11n + x2un
=024+1%x024+1%x02=06

Now compute {# — 3} = (-1 - 0.6) = —1.6.
Updating the weights we obtain

wilnew) = wi{old) + (e ~ yorxi
The new weights are obrained as

wy (new) = w {old) 4 alz — yinde
=02+02x% (~1.6) % 1 =—0.12

un(new) = walold) + al(s — yinkez
=02+02x(—-1.6)x1=-0.12
b(new) = blold) + oot ~ yin)
=02+402 x (—1.6) = —0.12

Now we compute the ertor,
E= (=g =(~16)2 = 256

The final weights after presenting first input sample
are w = [—0.12 — .12 = 0.12] and esror £ = 2.56.

The operational steps are carried for 2 epochs
of training and nerwork performance is noted. It is
tabulated as shown in Table 14.

The total mean square ertor at the end of two
epochs is summation of the errors of all input samples
as shown in Table 15.

Table 15

Epoch Total mean square error
Epoch 1 5.71

Epach 2 243

Hence from Table 15, it is clearly understood that the
mean square error decreases s training progresses.
Also, it can be noted that ar the end of the sixth
epoch, the error becomes approximately equal o 1.
The nerwork architecrure for ANDNOT function
using Adaline nerwork is shown in Figure 9.

Table 14
Weights
Inputs Ner Weight changes
Target input w) wy b Error

0 ox 1z ¥o (E—y) Awp Aw Ab {02 02 02} (1—y.)°
EPOCH-1

1 11 -1 06 ~146 ~032 —032 —032 -012 —0.12 —-0.12 256
1 -1 1 | =012 112 022 =022 022 010 —034 010 125
-1 11 ~1 —034 —066 013 -013 —0.13 024 —048 —0.03 043
-1 -11 =1 021 -12 024 024 ~-024 048 —023 —027 147
EPOCH-2

11 ~1 —0.02 =098 -0.195 —0.195 —0.195 0.28 —0.43 —0.46 095
1 -11 1 025 076 015 —015 015 043 —0.58 —0.31 0.57
-1 11 -1 =133 033 —0065 0065 0065 037 —051 —0.25 0.106
-} ~1 1 -1 -—0l11 —09 018 0.8 —018 055 —0.38 043 0.8

rALR T S

Mpeir g

—~—
B AP T ey e . -

oA w

m oA ..

——

90

Supervised Leaming Network

Figure 9 Network architecrure for ANDNOT
function using Adaline nerwork.

8 Using Madaline network, implement XOR func-
tion with bipolar inputs and targets. Assume the
required parameters for training of the network.

Selution: The waining pattern for XOR funcrion is
given in Table 16.

Table 16

x1 x2 1 t
1 1 1 -1
1 -1 1 1

-1 1 1

| -1 1 -

The Madaline Rule I (MRI) algorithm in which the
weights berween the hidden layer and outpur layer
remain fixed is used for training the nerwork. Initializ-
ing the weights o small random values, the nerwork
architecture is as shown in Figure 10, with inirial
weighes. From Figure 10, the inicial weights and bias
ate [wn wy) b1) = [0.05.0.2 0.3), [mw12 wap) =
[0.10.20.15) and [#] 1 &3] = [0.50.5 0.5). For first

Figure 10 Nerwork architecture of Madaline for
XOR functions (initial weights given}.

input sample, x; = 1, %3 = 1, target ¥ = —1, and
learning rate & equal to 0.5:

* Calculate net input to the hidden units:

Zinl = b1 + xywy| + xpwy
=03+1x005+1x02=035
zin2 = by w2 + xwn
=015+1x01+1x02=045
* Calculate the output 21,22 by applying the activa-

tions over the net input computed. The activation
funcrion is given by

. 1 'sz;nZO
f(’""')‘l—l if iy < 0

Hence,

2 = flaim) = f{0.55) =1
72 = flzim) = f(0.45) = |
* After computing the outpuc of the hidden units,
then find the ner input entering into the ourput
unit:
Y= b3+ zo +zm
=05+1x05+1x05=15

* Apply the activation function over the ner input
¥in to calculate the output y:

}’=f()'in) =f(15) =1

» Since r # y, weight updatien has to be performed.
Also since # = —1, the weighrs are updated on z
and z) that have positive net inpur. Since here both
net inputs 2,1 and zjp are positive, updaring the
weiglics and bias on both hidden units, we obrain

wilnew) = wi{old) + c— gy)x
bi{new) = b(old} + ar(e ~ Zing)
This implies:

] 1(ncw)=w11(old)+a(:— z;nl)xl
=0,054+0.5(—1—-0.55) x 1=-0.725
wya(new) = w3 (old) +a{r— zn2)x,
=0.140.5(—1—0.45) x 1 ==0.625
b1 (new) = & {old) + a{r—zn1)
=0.340.5(-1~0.55=—0.475

4.12 Solved Problems

N

w1 (new) = w1 {old) + oz~ zin1 2
=0.240.5(—1—0.55)x 1=-0.575
wha(new) =wya{old) + a(t— zn2)a2
=02+40.5(—1—0.45)x 1=—0.525 '
b (new) = bz (old) + e{t—5in2)
=0.15+03(—1=0.45)=—0575

All the weights and bias berween the input Jayer and
hidden layer are adjusted. This compleres the train-
ing for the first epoch. The same process s repeated
until the weight converges. Itis found that the weight
converges at the end of 3 epochs. Table 17 shows the
training performance of Madaline nerwork for XOR
funcrion.

The network architecture for Madaline nerwork
with final weights for XOR function is shown in
Figuse 11.

9. Wsing back-propagation network, find the new
weights for the ner shown in Figure 12. Tt is pre-
sented wich the input pattern [0, 1) and the rarger
outpu is 1. Use a learning rate o = 0.25 and
binary sigmoidal activation function.

Solution: The new weights are calculated based
on the training algorithm in Section 3.5.4. The
initial weights are [o1 #o1] = [0.6 ~0.1 0.3],

Table 17

Figure 11 Madaline nerwork for XOR function
(final weights given).

Figure 12 Newwork.

Inputs Target

x x 1 {t) Zinl Znz B & Yy ¥

wn wa A wiz wn by

EPOCH-1

111 -1 055 0.45 1115
1-11 1 —0.625 —0.675 —1-1-05-1
-1 11 1 —1.1375-0.475 —1-1-0.5-1

—1-11 =1 16375 13125 1 1 15 1
EPOCH-2
1 11 -1 0355 0168 1 1 L5 1

1-11 1 —0.1845-3.154 —1—-1-0.5—1
-1 11 1 —3.728 —0.002 —-1-1-05-1
—1-11 -1 -1.0495-1.071 —1-1-05-1
EPOCH-3

111 —1 —1.0865-1.083 -1-1-0.5-1

1-11 1 1.5915-3.655 1-1 05 1
-1 11 i —3728 1501 -1 1 05 1

~-1-1 1 —1 -1.0495-1.701 —-1—-1—-0.5—1

1-0.725 —0.58 —0475-0.625 —0.523 —0.575

0.0875—1.39 034 —0.625 —0.525 —0.575
0.0875-139 034 —1.3625 02i25 0.1625
1.4065—0.069—0.98 —0.207 1.369 —0.994

0.7285-0.75 —1.66 —0.791 —0.207 —158

1.3205—1.34 —1.068—0.791 0.785 -1.58
1.3205—1.34 —1.068—1.29 0.785 —1.08
1.3205-1.34 —1.068-~1.29 1.29 —1.08
132 —-134 -1.07 -1.29 129 -108
1.32 —1.34 —1.07 -1.29 129 -1.08
132 —-134 —1.07 -1.29 1.29 -1.08
1.32 —1.34 —1.07 -1.29 129 -1.08

-~

o

Supervisad Leaming Natwork

{232 22 2] = [—0.3 0.4 0.5] and (un wy wo] = [0.4
0.1 —0.2], and the learning rate is & = 0.25. Acti-
vation function used is binaty sigmoidal acrivation
function and is given by

1

fW=1r=

Given the output sample [x], %) =
t=1,

[0, 1} and target

* Calculate the net inpue: For zy layer

Zipl = g1 + xpen + X
=034+0x06+1x-01=02

For z; layer

Zj) = 2 T 212 + X2
=054+0x-03+1%x04=09

Applying activation to calculate the output, we
obrain

zy = flgi) = = 0.5498

Them 13002

1
5 = 0.7109

22 =f(zin2) = m = 1—+_e‘—°

Calculate the ner inpuc entering che output layer.
For y layer

Yin = wn +zyw + zun
= —(.2+4 05498 x 0.4 + 0.7109 x 0.1
= 0.09101

Applying activations o calculate the outpur, we
obrain

= fGin) =

=0.5227

L +em 1 F 009101

Compure the ertor portion &

8= (6 — ylf '(y._',rgrf’)__r)

Now
f’(}'l'n) =f(_]‘in)[l _f(yin)_] = 0.5227(1 - 0.5227]
F(yia) = 0.2495

‘This implies
§ = (1~ 0.5227) (0.2495) = 0.1191

Find che changes :inrwzig—l;gge—n;een hidden and
output layer:

Awy = aby 7 = 0.25 x 0.1191 x 0.5498

—T=OOIE
Awg = wdy g = 0.25 x 0.1191 x 0.7109
=T.02117

Awy = wf) =025 x 0.1191 = 0.02978

Compure the error portion 8; between input and
hidden layer {f = 1 to0 2):

m
Sinj= E g
=1
8imj=8rwy [only one outpur neuron]
=it = 5y w11 = 0.1191 x 0.4 = 0.04764
=dimz =8y wz = 0.1191 x 0.1 =0.01191
LT e
Error, 81 == 8 f'(2im)

Flzim) = fzim) [1 = flzim)]
=0.5498[1 — 0.5498] =
8 =ainlf’(zinl)
= 0,04764 x 0.2475 =0.0118
Error, 82 =82 f (zin2)
Flzinz) = flama [V — flzin2)]
= 0.7109[1 — 0.7109]) = 0.2055
8y =8 f'(zim2)
=10.01191 x 0.2055 = 0.00245

0.2475

Now find the changes in weights between mput
and hidden layer:

=0.25%0.0118x0=0

Avy = by xp=0.25x0.0118 x 1 =0.00295
Avy =81 =0.25%0.0118=0.00295
=0.25%0.00245%x0=90

Ky = abpxa =0.25 x 0.00245 x 1 =0.0006125
Avgy =82 =0.25 % 0.00245=0.0006125

AU“ =t1l31xl

Avp=adyx,

r’—_*__ [

3.12 Solved Problems

93

= Compute the final weights of the nerwork:

ﬂu(nEW) = Ul](Old)"'AUn =06+0= 0.6
v12{new) = spz{old)H+An; = —03+0=-03

v21 (new) = w(old)+-Awy
= —0.1 4 0.00295 = —0.09705
v22{new) = wz(oldH+Avpn

= 0.4 + 0.0006125 = (.4006125
w) (new) = wy(old)FAw) = 0.4 +0.0164,

=0.4164
un(new) = uplold)+Aun = 0.1 + 0.02117
=0.12117
vg; (new) = vy (old)+ A vy, = 0.3 4+ 0.00295
= 0.30295
v (new) = sp(old)+Awm;
= 0.5+ 0.0006125 = 0.5006125
wylnew) = uplold)+Awg = —0.2 + 0.02978

= ~0.17022

Thus, the final weights have been computed for the
nerwork shown in Figure 12.

10. Find the new weights, using back-propagation
network for the network shown in Figure 13.
The network is presented with the inpur pat-
tern {—1, 1] and the rarger outpur is +1. Use a
leaming rate of & = 0.25 and bipolar sigmoidal
activation function.

Solution: The initial weights are [py122)91] = [0.6
-0.1 0.3}, [v12 22 w2} = [-0.3 0.4 0.5] and [un
wy wy) = [0.4 0.1 —0.2], and the learning rate is
o« =0.25.
Activation function used is binary sigmoidal
activadon function and is given by
2] e

= —1=
fO=1r~= T+e=

Given the inpur sample [x1, x2] = [—1, 1] and target
t=1:

+ Calculate the netinput: For 2 layer

Zin) = ¥ + x0T a2101
=034+ (-1)x0.6+1x—0.1=-04

N
\ £ Gin) =050+ fim] [1 = frial]

Figure 13 Network.

For 2z layer

zZiy = vz + w2 + X202
=05+{-1)x-03+1x04=12

Applying activation to calculace the output, we
obtain

1t 1=

21 = flzim) = 1—_;;_—:‘; = 1—Ie_°_4 = —0,1974
1 P
zy = f(gin) = T = T =0.537

Calculate the net input entering the ourput layer.
For y layer

Yin = w0+ Z e+ 2un
= —0.2 + (—0.1974) x 0.4 + 0.537 x 0.1
= —0.22526
Applying activations to calculate the outpur, we
obtain

|t] 022526

— = T BT =-0.1122

y=flpa) =
Compute the error portion 8;:

Be= (5 = yo)f Crinkd)
Now

- B

= 0.5{1 - 0.1122)[1 +0.1122] = 0.4937 .

94

Supervised Learning Natwork

This implies

8y = (1 +0.1122) {0.4937} = 0.5491

Find the changes in welghts berween hidden and
output layer:

Awy = abyzy = 0.25 x 0.5491 x ~0.1974
—0.0271
ady za = 0.25 x 0.5491 x 0.537 = 0.0737

0.25 x 0.5491 = 0.1373

H

Aun
Auyg = ad =

Compute the error portion &; berween input and
hidden layer (j =110 2}

§ = &ini f' (zin)
m

8inj = Z 8i
=l

8imj =81

~

[". only one output neuron]
=85 =8 wi = 0.5491 x 0.4 = 0.21964
=i =8 1) = 05491 x 0.1 = 0.05491

Errer, 8 =5,‘,,lf’(z,',,1) =0.21964 x 0.5

x (14 0.1974){1 — 0.1974) = 0.1056

Ercor, 87 =82 f'(zi2) = 0.05491 x 0.5

x (1 —0.537)(1 4 0.537} = 0.0195

Now find the changes in weights between input

and hidden layer:

Apyy =adx, =0.25 % 0.1056 x —1 = —0.0264

Ay =ad x=0.25x0.1056x 1 =0.0264

Ij .13 Review Questions

Avgy=ad=0.25x%0.1056= 0.0264
Aviy=abx, =0.25 % 0.0195 x —1=—0.0049
Argg=rdrx =0.25 % 0.0195 x 1 =0.004%
Awgy =e3=0.25x0.0195=0.0049

+ Compiite the final weights of the neowork:

vy (new) = vy (old)+Awy; = 0.6 — 0.0264

= 0.5736
via{new} = vpa{old)+Amz = —0.3 — 0.0049
= —0.3049
vay{new) = 9 (old)+Avy = —0.1 + 0.0264
= —0.0736
vaz(new) = va{old)+Avas = 0.4 + 0.0049
= 0.4049
w) (new) = wy{old)+Aw, = 0.4 —0.0271
=0.3729
ur (new) = un{old)+Awy = 0.1 4 0.0737
=0.1737
vo1(new) = vy (old)+Awg = 0.3 4+ 0.0264
= 0.3264
voz2(new) = pya(old)+Awgs = 0.5 4+ 0.0049
= 0.5049
uy(new) = uglold)+Awg = 0.2 + 0.1373
= —-0.0627

Thus, the final weight has been compured for the
nerwork shown in Figure 13.

. What is supervised learning and how is it differ-
ent from unsupervised learning?

. How does learning rake place in supervised

learning?

. From a mathemarical point of view, what is the

process of learning in supervised learning?

4. Wha is the building block of the perceptron?

5. Does perceptron require supervised learning? If

no, what does it require?

List the [imitacions of perceptron.

7. State the activation function used in perceptron
nerwork.

8. Whar is the importance of threshold in percep-
tron nerwork?
9. Mention the applications of perceptron network.
10. What are feature detecrors?
il. With a neat fowchart, explain the training
process of perceptron network.

12. What is the significance of error signal in per-
ceptron network?

3.14 Exercise Problems

95

13.

14,

15,
16.
7.
18.

19.
20.
21.

22,
23.

24,

25,

26.
27.
28,
29.

30.

31.

32

33

State the testing algorithm used in perceptron
algorithm.

How is the linear separability concept imple-
mented using perceptron network training? |
Define perceprron learning rule.

Define delra rule.

State the error function for delra rule.

What is the drawback of using optimizarion
algorithm?

What is Adaline?

Draw the model of an Adaline network.

r

Explain the training algorithm used in Adaline
network.

How is a Madaline nerwork formed?

Is it true thar Madaline network consists of many
perceptrons?

Stare the characreristics of weighted interconnec-
tions berween Adaline and Madaline.

How is training adopted in Madaline network
using majority vote rule?

State few applications of Adaline and Madaline:
What is meant by epoch in training process?
Whar is meant by gradient descent method?
State the importance of back-propagation
algorithm.

Whar is called as memorization and generaliza-
rion?

List the stages involved in training of back-
propagation network.

Drraw the architeeture of back-propagation algo-
rithm,

State the significance of error portions &; and &
in BPN algorithm,

l3.14 Exercise Problems

34.
35.

3.
57.

38.

3%
40.

41.
42.

43,

. State the techniques for proper choice of learning

45.
46.
47.
48.
49.
50.
5L

52.

What are the activations used in back-
propagation network algorithm?

What is meant by local minima and globat
minima?

Derive the generalized delta learning rule.

Derive the derivations of the binary and bipolar
sigmoidal activation function.

Whar are the factors that improve the conver-
gence of learning in BPN necwork?

What is meant by incremental learning?
Why is gradient descent method adopred to

minimize error?

What are the methods of initialization of
weights?

What is the necessity of momentum factor in
weight updation process?

Define “over fitting” or “over training.”

tate.
What are the limitations of using momentum
facror?

How many hidden layers can there be in a neural
network?

Whar is the acrivation function used in radial
basis function nerwork?

Explain the training algorithm of radial basis
funcrion nerwork.

By whar means can an IIR and an FIR filcer be
formed in neural network?

What is the imporeance of functional link net-
work?

Write a short note on binary classification tree
neural nerwork.

Explain in derail about wavelet neural network.

1.

2.

Implement NOR function wsing perceptron
nerwork for bipolar inputs and targers.

Find the weights required to perform the fol-
lowing classifications using perceptron network.
The vectors (1, 1, —1, ~1) and {1, =1, 1, =1}

are belonging 1o the class {so have targer value 1),
vector {~1, =1, =1, 1) and {-1, -1, 1 1) are
not belonging 1o the class {so have target-value
—1). Assume learning rate 1 and inicial weights
as 0.

96

Supervised Learning Network

3.

Classify the two-dimensional pattern shown in
figure below using perceptron nerwork.
* k% ’ ¥ &
e P
PRI] ' ke
“Cc* A
Target value : +1 Target value : - 1

. Implement AND function using Adaline net-

work.

. Using the delta rule, find the weights required

to perform following classificarions: Vectors (1,
1, -1, =1} and (-1, -1, —1, —1) are belong-
ing to the class having targer value 1; vectors
(1, 1, 1, 1) and (-1, -1, 1, —1} are not
belonging to the class having target value —1.
Use a leaming rate of 0.5 and assume ran-
dom value of weights. Also, using each of the
training vectors as input, test the response of
the net.

. Implement AND function using Madaline net-

work.

. With suitable example, discuss the pereeptron

network training with and without bias.

. Using back-propagation network, find the new

welghts for the nerwork shown in the following
figure. The network is presented with the inpur

3.15 Projects

pareern [1, 0] and target output 1. Use learning
rate of @ = 0.3 and binary sigmoidal activation
function.

9.

10.

Find the new weights for the network given in
the above problem using back-propagation ner-
work. The network is presented the input pattern
[1, —1] and earget outpur +1. Use learning rate
of @ = 0.3 and bipolar sigmoidal activation
function.

Find the new weights for the activation func-
tion with the network shown in problem 8 using
BPN. The nerwork is presented with the input
partern [—1, 1] and targer outpur — 1, Use learn-
ing rate of @ = 0.45 2nd suirable acrivation
function.

1.

Classify epper case letters and lower case letters
using perceprron nerwork. Use as many output
units based on training sec as possible. Test the
nerwork with noisy pattern as well.

. Vrite a suitable computer program 1o classify the

numbers berween 0—9 using Adaline network.

. Write a computer program to train a Madaline to

perform AND funcrion using MRI algorithm.

. Wiice a program for implementing BPN for train-

ing a single hidden layer back-propagation nec-
work with bipolar sigmoidal units (x = 1) w©

achieve the following two-to-one mappings.

* y=06 sin{ir x1} + cos(wxa)
¢ y =sin{m x1) + cos(0.2mx7)

Set up wwo sets of dara, each consisting of 10
inpur—output pairs, one for rraining and other for
tescing. The input-output dara are obtained by
varying input variables (x1, x2) within [~1, +1]
randomly. Also the output daca is normalized
within [—1, 1]. Apply training to find proper
weights in the nerwork.

(LN RVATA A

P

Associative Memory Netwotks

— Learning Objectives :

Gives derails on associative memories.

Hopfield network with its electrical model is
described with training algorithm.

Discusses the training algorithm used for pat-
tern association networks - Hebb rule and
outer products rule.

Analysis of energy function was performed
for BAM, discrere and continuous Hopfield

The architecture, flowchart for training pro- nerworks.

cess, training algorithm and testing algorithm

An overview is given on the irerative autoasso-
of auroassociarive, hereroassociarive and bidi- ciative nerwork ~ linear autoassociator mem-
rectional associative memory are discussed in ary brain-in-the-box network and autoassoci-
detail. ator with threshold unit.

Variants of BAM ~ continuous BAM and
discrere BAM are included.

Also temporal associative memory is discussed
in brief.

I 4.1 Introduction

An associative memory nenwork can seore a set of parterns as memories. When the associative memory is being
presented with a key partern, it responds by producing one of the stored patterns, which closely resembles
or relates 10 the key patrern. Thus, the recall is chrough associarion of the key pagrern, with the help of
information memorized. These types of memories are also called as conzenz-addressable memories (CAM) n

contrast 1o that of tradirional addvess-addressable memories in digital computers where stored pauern (in byres)

is recalled by s address. Ir is also 2 matrix memory as in RAM/ROM. The CAM can also be viewed as
a.ssocia(ing_clmddjc_si_i.e.;fo every data in the memory there is a corresponding unique address. Also,
it can be viewed as data correlator] Here input dara is correlated with that of the stared daa in the CAM.
It should be nered §tored parterns must be unique, i.e., different parterns in each location. If the
same pattern exists in more than one locarion in the CAM, then, even though the correlation is correct, the

address is noted to be ambiguous. The basic scrucrure of CAM is given in Figure 4-1,

Associative memory makes § Eara][e% scarcE }vithin a@(@ﬁ he concepr behind this search is
to output any one or all stored items which march the givén search argument and to retrieve the srored data
either completely of parcially.

Two types of associative memories can be differentiated. They are autoassociative memory and heteroasso-
ciative memory. Both these nets are single-layer nets in which the weights are determined in a manner thar

the net stores 2 set of pactern associations. JEac
IF each of the ourput véctorsissame as the input vectors with which it is associated, then the net is a said to

1
=) n
3 Y
| o e \E Lo
ol X ¢ \\‘ {
o C

ch ‘of this association is an inpu-oATpUt vector pail; say, 5"

98 Associative Memory Networks

_— [———————> Malch/No match
P

fnput * CAM °

datla . Malrix Odulpui

bus . . ata

— p———————-

Figure 4-1 CAM archirecture.

be autoassociative memory net. On the ocher hand, if the outpuc vectors are different from the inpur vecrors
then the ner is said to be heteroassociative memory net.
IF chere exist vectors, say, x = (xy,x3, . .. ol and ¥ = (', 0", ..., x5,)7, then the hamming distance

(HD) is defined as the number of mismarched compongnis of x and ¥ vectors, ie.,

¥ v —] ifx, % € 00,1)
i=l
HD (x,x) = "

% leg—x;l ifx, £, € [-1,1]
i=f e

The architecrure of an associative net may be eithet feed-forward or iterative (recurrent). As is already known,
in a feed-forward net the informarion flows from che nput unifs 6 the oatpur urits: on the other hand,
in a recurrenc neural ner, there are connections among the units to form a closed-loop structure. In the
forthcoming sections, we will discuss the training algorithms used for partern association and various types
of association nets in deail.

l4.2 Training Algorithms for Pattern Association

There are two algorithms developed for training of pattern associacion nets. These are discussed below.

l4.2.1 Hebb Rule

The Hebb rule is widely used forfinding the weights of an associative memory neural ner. The training vector
pairs here are denorted as 5:r. The Aowchart for the training algorithm of pattein sssoctation is as shown in
Figure 4-2. The weights are updated until there is no weight change. The algorichmic steps followed are given
below:

Step 0: Seall the initial weights to zeto, 1.2, ‘ I
wy =0 f=twnj=1wm

Step 1: For each training targer input ourput vector pairs s, perform Steps 2—4.

Step 2: Activate the input layer unirs to current training inpur,

x=s (fori=1wn)

4.2 Training Algorithms for Pattern Association 29

{ Start]

r

Initiatize all weibhls B .
w,=0{i=1ton,j=1tcm

Present inpul signals
X=S

Present oulpul signals
L=t

]
Weight adjustment

wr(new) = w,(old)-i—x’yf

(Stop } - \{ ":.‘)

Figure 4-2 Flowchart for Hebb rule.

Step 3: Activace the outpur layer units to current target outpur,

Y=t (forj =1tom) '\; o) ('J'\)
ANV I
Step 4: Starc the weight adjustment U E NG
L wi(new) = wy{old) + %y (fori=1ltomfj=Ltom) l

This algorichm is used for the calculation of the weights of the associative nets. Also, it can be used with
patterns that are beirig represented as either binary or bipolar vectors.

—T

G

TR

100 Assaciative Memary Networks

I 4.2.2 Outer Products Rule

_Outer praduces rule is an alternarive method for finding weighes of an associarive net. This is depicted as

follows:

Input=r s=(51,. .. 5. 50)
Output = t=(fy,.. . . fjue o i ta)
The outer product of the two vectors is the product of the matrices § = T and T= 1 ie., between {n x 1]

marrix and (1 x m] maurix. The oanspose is to be taken for the input matrix given.
The marrix multiplication is done as follows:

*—\\
ST: .sT ¢ /
T
Ex
'.’"" .
"/ _:-S =14 [F‘l---fj---fm(ﬁxm
I :\;
N

e . NG .. Sl N

£

- B
W= st ... s .. sty .
Lsn&y oo Snbj oo Snfa | wxm

This weight matrix is same as the weight marix obrained by Hebb rule to store the partern association 5z,

For storing a set of associations, s(p):{p), p =110 P, wherein, o L
@) =610 5o, - a0)) o
) = (1) ()) For
the weight macrix W= {uy;} can be given as il ”5%_ ¥
P - N VG‘&(O:S: v b 6‘
wi=3 d@40 L7 00T N g
p=l] \“ . .\: . x
This can also be rewritten as ©oo

by component,

4.3 Auloassociative Memory Netwark 101

for finding the weights of the ner using Hebbian learning. Similar to the Hebb rule, even the delta rule
discussed in Chapter 2 can be used for storing weights of patrern association nets.

I 4.3 Autoassociative Memory Network

L4.3.1 Theory

In the case of an autcassociative neutal ner, the training inpur and the targer output vectors are the same.
The determination of weighs of the associafion net is called storing of vecjors. This type of memory ner needs
suppression of the ourput noise ar the memory oucpur. The vectors that have been stored can be rerrieved
from distorted (noisy) inpur if the input is sufficiendy similar to it. The necs performance is based on its
abiliry 1o reproduce a stored pautern from a noisy input. It should be noted, that in the case of auroassociative
ner, the weights on the diagonal can be set 10 zero. This can be called as auto associative net with no self-
connecuon The main reason behind setting the weights to zero is that it improves the net’s ability to generalize

or incréase the biological plaunblll:y oF the net. Tl-us may be more suited for iterarive nets and when délra
taile is being used.

I 4.3.2 Architecture

The architecture of an autoassociative neural ne is shown in Figure 4-3, It shows that for an auroassociative

net, the training input and target outpur vectors are the same. The input layer consists of » inpur units

and the outpur layer also consists of n ourput units. The input and ourpur layers are connecred through
: el el gy

weighrted interconnections. The inputand putpir vectors are perfectly correlar ea \VIl’Fl eacE other component

R

l4.3.3 Flowchart for Training Process

The flowchart here is the same us discussed in Section 4.2.1, but it may be noted that the number of inpur
units and outpur units are the same, The flawchart is shown in Figure 4-4.

- h@ l @ h

Figure 4-3 Architecture of autoassociative ner.

102

Associative Memory Networks

(Start)

Initialize the weights 1o zero
w,= 0

For Mo
each
vector,”
Yes

Aclivate input units
X=5,

Activale outpul units
=S

Weight adjusiment
w, (new) = w, {ald)+x ¥,

Stop ~

Figure 4-4 Flowchart for training of auroassociative net.

4.3 Auloassociativa Memory Network 103

l 4,3.4 Training Algorithm

The training algorithm discussed here is similar to thar p:hscussed in Section 4.2.1 but there are same numbers
of outpur units as thar of the inpur units.

[—Step 0: Initialize all the weights to zero, ' j
wg:O{i: lwn j=1wa)

Step 1. For each of the vector that has ro be stgred perform Steps 2—4.

Step 2: Activare each of the input unir, \ o
4 P
x,=5/=1wn) ptl‘he ri’oo‘n_\?“(‘
Step 3: Activare each of the output unir, s (‘-Q O
o JRCAF AT
_y','—;,-{]—lton) R“‘
I} o
Step 4: Adjust the weights, 1 e '

wilnew) = w,)‘{old) + x5

The weights can also be detertnined by the formula

W= Z, (p)fp)

L

I 4.3.5 Testing Algorithm

An autoassociative memory neural network can be used 10 determine whether the given inpur vector is a

“known" vector or an "unknown" vector. The net is said to recagnize a "known” vector if the ner produces a

pattern quclJVauon on the ourput unjts whlch is same asone of the f the vecrors stored in it. The resting procedure
—_— T

| Step 0: Set the weights obrained for Hebb's rule or ourer products.]
Step 1: For each of the testing inpur vector presented perform Steps 2—4.
Step 2: Ser the activations of the input units equal to that of inpus vecror.

Step 3¢ Calculate the net input to 2ach ourpur uni[j =lwm

)’m Z X wg

Step 4: Calculate the output by applying the activation over the net inpux:

+1 ifyy, >0

L y=flmb=1_, iy, < 0 =

This type of nerwork can be used in speech processing, image processing, pattern classification, etc,

104

Associative Memory Networks

I 4.4 Heteroassociative Memory Network

I 441 Theory

In case of a hereroassociative neural net, the training inpurt and the target outpur vectors are different. The
weights are determined in a way thar the ner can store a set of partern associations. The association here
is a pair of training input rarget ourput vector pairs (s(p),), with p =T, TP Each vector s{p) has n
components and each vector £p) has m components, The determination of weights is done either by using
Hebb rule or delta rule. The net finds an appropriate outpur vector, which corresponds to an inpurveetor x,
thar wttier one of the stored patterns or a new pattern.

l 4.4.2 Architecture

The architeccure of a heteroassociative net is shown in Figure 4-5. From the figure, it can be noticed that for
a heteroassociarive ner, the training input and target output vectors are different. The input layer consists of
» number of input units and the ourpur layer consists of m number of output unics, There exist weighted
interconnections berween che inpur and oucput layers. The inpur and output layer units are not correlared

with each other. The flowchart of the training process and the TaiRTIg Zigotich are the same as discussed 6~

Section 4.2.1.

l 4.4.3 Testing Algorithm

The testing algotichm used for testing the heteroassociative net with either noisy inpur or with known inpur
is as follows:

I Step 0: Initialize the weights from the training algorichm. I
Step 1: Perform Steps 24 for each inpur vector presented.

Step 2: Ser the activacion for inpuc layer units equal to that of the current input vector given, x;.

Figure 4-5

Architecture of heteroassociarive ner.

o

4.5 Bidirectional Associative Memory {(BAM) 105
Step 3: Calculate the net input to the cutpur units:
n
Vi = Zx;w,'j (j=1twm)
i=] T) b\
Step 4¢ Determine the activations of the outpur units over the calculated net input:\))\?‘p
k]
1 if >0 o
y=1 0 =0 o Lo)
T -1 i g0
/ I

Thus, the ourpur vector y obtained gives the pattern associated with the input vector x.

Note: Heteroassociative memory is not an fterative memory network. If the responses of the net are binary, then the

activation function ta be used is —
=0 i Fui <0
=

I 4.5 Bidirectional Associative Memory (BAM)

4.5.1 Theory

The BAM was developed by Kosko in the year 1988. The BAM nerwork performs forward and backward
associasive searches forfscored stimulus responses.iThe BAM is a recurrent hetergassoctative pattern-matching
nerwork that encodes biWns using Hebbian Tearning rule. It associates paterns, say from
set A to patterns from ser B and vice versa is also performed. BAM neural nets can respond to inpuc from
cither layers {input layer and output layer). There exist two types of BAM, called diserere and continuous BAM.
These rwo types of BAM are discussed in the following sections,

I 452 Architecture

The architecture of BAM network is shown in Figure 4-6, [t cansists of two layers of neurons which are con-

__nected by directed weighted parh interconnectinns. The nenwork dynamics involve rwo layers of interaction.

3 network iterates by sending the signals back and forth between the two layers until all the neurons
reach equilibrium. The weights assaciated with the nerwork are bidirectional. Thus, BAM can respond o
the puts in either layer. Figurc 4-6 shows a single layer BAM network consisting of 7 units in X layer and
 units in Y layer. The layers can be connected in o directioms-bidirectional) with the result the weight
matrix sent from the X layer to the Y layer is W and the weight marrix for signals sent from the Y layer 1o the

)_(layer i$ W, Thus, the weiphvnmawris I calclated in both directions.

I 4.5.3 Discrete Bidirectional Associative Memory

The strucrure of discrere BAM is same as shown in Figure 4-6. When the memory neurans arc being activaced
by putting an initial vector at the inpur of 3 layer, th ves afwo-pirern seable state #ith each

attern ar the e dayer, Thus, the necwork involves two layers of interaction berween each other

106

Associative Memory Natworks

x

X

*n

-— T Wem w

Figure 4-6 Bidirecsional associative memory ner.

The two bivalent forms of BAM are found to be related with each other, i.c., binary and bipolar The weights in
both the cases are found as the s od ucrs of the bipolar form of the given training vector

In case of BAM, & defifiite nonzero threshold Js asignesf Thus, the aciivation TIRCtion 15 a step function,
with the defined t6nzero threshold. When compared, to the binary vectors, bipolar vectors improve the

performance of o GHU‘-!:EE&Q,E(LE ——— =

—

4.5.3.1 Determination of Weights

Let the input vecrors be denoted by s(p) and targer vectors by #(p), p =

-+ P. Then the weight marrix to
store a set of input and target vectors, where

-"(P) = (S] (P)l e rjf(ﬂ)) .)Srr(P)}
) = (alph .. ag(p)s. .y tlp))

can be decermined by Hebb rule training algorithm discussed in Section 4.2.1. In case of input vectors being
binary, the weight maurix W = {wy} is given by

— e —

P
wi= Y [25(p) — 11[24(p) - 1]

p=1

On the other hand, when the input vectors ate bipolar, the weight matrix W = {w;} can be defined as

P
wi=y 5())
=1

The weighes matrix in both the cases is going to be in bipolar form neither the inpuc vectors are in

binary or not. The formulas mentioned above can be directly applied to the determination of weighes
of a BAM.

4.5 Bidirectional Agsociative Memory (BAM) 107

4,5,3.2 Activation Functions for BAM

The step activarion function with a nonzero threshold | ‘ ivarion function for discrete BAM
nétwork. The activadon function 1s based on whether the input targer vector pairs used are binary or bipolat.

The activation function for the Y layer

1. with binary inpur vecrors is

1 if 3> 0
%=y € =0
|0 if P 0
2. with bipolar input vectors is
=1 % I =t
-1 if Fini< 0
The activation function for the X layer
1. with binary input vectors is
1 if x,>0
=1 x if x,, =90
@ if x,<0
2. with bipolar input vecrors is
1 if x>0
xj = Xf if Kini =§;

=1 if x,;<8;

[t may be noted that if the threshold value is equal to thar of the net inpur calculated, then the previous output
value calcubated is left as the activation of that unid| At a pardcular time inseant, signals are senc only from
one layer to the other and nor in bath the directions.

4.5.3.3 Testing Algorithm for Discrete BAM

The testing algorithm is used 1o test rhe(rﬂ'_’ sy_patterns bntering into the nerwork. Based on the training
algarichm, weighes are determined, by means of which net input is calculaced for the given test patern

and zactivations is applied over it, 10 recognize the test parterns. The testing algorithm for the net is as
follows:

Step 0: Initialize the weighs 1o store p vectors. Also initialize all the activations o zero. —I

Step 1: Pesform Steps 26 for each testing inpur.

Step 2: Ser the activations of X layer o current input pattern, i.e., presenting the input pateern x to X layer
and similarly presenting the inpur pattern y t Y layer. Even though, it is bidirectional memory,

at one time step, signals can be sent from only one layer. So, cither of the inpur pacterns may be
the zero vector.

T v

108 Associative Memory Networks

Step 3: Perform Steps 4G when the activacions are not converged.

Step 4: Update the activations of units in Y layer. Calculate the net inpu,

n
Fiap = Z"iwif
i=1
Applying the activations (as in Section 4.5.3.2}, we obmin

Y= f (}'.‘nj)
Send this signal to the X layer.

Step 5: Update the activations of units in X layer. Calculate the net input,

mn
Kini = Z_‘bw,‘r
j=1
Apply the activations over the net input,

X = f (xini)
Send this signal to the Y layer.

Step 6: Test for convergence of the net. The convergence occuts if the acgivarion vectors x and y reach
l_ esuilibrium. IF this occurs then stop, otherwise, continue I

I 454 Continuous BAM

A continuous BAM transforms the input smoothly and continuously in the range 0-1 using logistic sigmoid
functions as the activation funcrions for all units. The logismﬂﬁmﬁwwmy
igmol nction or bipolar Sigmotdiifunetion. When 2 bipolar sigmoidal funcrion wich a high gain is
chosen, then the continuous BAM might converge w a state of vectors which will approach vertices-of the

cube. When thar scare of the vector approaches it acts Tike w discieie BAM.
If l'hf‘:. input vectors are binary, (s(p), €}, p = I to P, the weights are determined using rthe farmula
oA .

: ’ : »{':\(lj:\ r
S Y N L= fp) — ip) —
NN ey N = D [25(p) — 1][266p) — 1]
T -:\‘:‘ " ’ K \" (}L." p=]

™
i.¢.; even though the inpur vettors are binary, the weight matrix is bipolar. The activation function used here
is the logistic sigmoidal function. Ific is binary logistic function, then the activadon function is
—

1
Joi = T
If the activation function used is a bipolar logistic function, then the funcrion is defined as
2 L —e
T4y 1

Fiw)

4.5 Bidirectional Associative Memory (BAM) 109

These activation funcrions are applied over the net inpu to calculate the output. The nec input can be

calculated with a bias incfuded, i.e., N . \.r-’l.'
VL)
4

Yinj = b} + Ex,—w,'j
. i

and all these formulas apply for the units in X layar also.

I 455 Analysis of Hamming Distance, Energy Function and Storage Capacity

The hamming distance is defined as the number of mismatched components of two given bipolar or l:inar-y
vecrors. It can also be defined as the number of different bits in two binary or bipolar vectors Xand X', It is
denored as H [, X'}. The average hamming distance berween the vectors is (Un)H1X, X", where “a” is the
numnber of components in each vector. Consider the vectors,

X=[1 010110 ad X¥=[111100 1]

The hamming discance berween these two given vectors is equal 10 5. The average hamming distance between
the corresponding vectors is 3/7. ‘ - .

The stabiliry analysis of a BAM is based on the definition of Lyapunov function {energy funcrion). Consider
that there are p vector association pairs to be stored in a BAM:

(0, D PN

where ¥ = (&, . LT and ff = (4 LT are either binary or bipol.ar vectors. A.Lyapunov
function must be always bounded and decreasing. A BAM can be said to be bldirecum‘-la-lly stable if che stare
corverges to a stable point, ie, ¥ > ¥t o ¥+ and ¥*+2 = #*. This gives the minimum of the energy
function. The energy function or Lynapunov funcrion of a BAM is defined as

, =1 7.7 Ly q
Ef(x,y)=Tx Wy-— 3 Wx = Wi

The change in energy due to the single bic changes in both vectors y and x given as Ay; and Ax; can be
found as

AEp{y) = VyBAyi = —Wbyi = — (;x;w;) X Byip i=11ton
=1

n
ALy} = Vi EAx = -—WTyA.\.}- = - (Ey;w,;,-) xAx, j=1rom
i=1
where Ay; and A are given as)
w

" .
2 i Yy 0 2 if Y guwy>0
= =

n , »nt
Ag=23 0 if Yywi=0 and Ay= 0 if Z xjw =0
A | = =1
m
-2 if Z xjw,;,'< 0
j=

-2 if 3 ywy<0
=i

110 Associative Memory Networks

Here the energy funcdon is bounded below by

Efep) 2~ 3 |yl

i=l j=1

so the discrete BAM will converge to a stable state.
The memory capaciry or the storage capacity of BAM may be given as

min(rz, 1}

where “»" is the number of units in X layerand “mr” is ¢

he number of units in Y layer. Also a more conservative
capaciry Is estimated as follows:

J/min{m, B)

p.s Hopfield Networks

John J. Hopfield developed a model in the year 1982 conforming to the asynchronous nature of biological
neurons. The networks proposed by Hopfield are known as Hopfield networks and it is his work thac promoted
construction of the first analog VLSI neural chip. This nerwotk has found many useful applications in

associative memory and various optimization problems. In this section, two types of nerwork are discussed:
discrete and continuons Hopfield networks.

I 4.6.1 Discrete Hopfield Network

The Hopfield nerwork is an autoassociative fully interconnected single-layer feedback necwork. It is also a
symmerrically weighred nerwork. When this is operated in discrete line fashion it is called as discrere Hopfield
network and its archirecture as a single-layer feedback network can be called as reeterrens. The nerwork rakes

owo-valued inputs: binary (0, 1) or bipolar (41, —1); the use of bipolar inputs makes the analysis easier. The
nerwork has symmerrical weights with no self-connections, i.e.,

wi = 1wy wi =0

The key points to be norted in Hopfield net are: only one unir updares its activation at a time; also each unit
is found to continuously receive an exrernal signal along with the signals it receives from the other units in
the ner. When a single-layer recurrent network is performing a sequencial updaring process, an input pactern
is first applied 1o the nerwork and the network’s autput is found to be initialized accordingly. Afterwards,
the fnitializing patcern is removed, and the outpur that is inirialized becomes the new updared input through
the feedback connections, The first updated input forces the fiest updated output, which in turn aces as
the second updated input through the feedback interconnections and resulis in second updated output.
This transition process continues until no new, updated responses are produced and the nerwork reaches its
equilibrium.

The asynchronous updacion of the units alfows a function, called as energy functions or Lyapunov function,
for the ner. The existence of this function enables us ro prove thar the net will converge to a stable set of
activations. The usefulness of content addsessable memory is realized by the discrete Hopfield ner,

) 111
4.6 Hopfield Networks

]

¥ Ye Y
Figure 4-7 Acchireczuse of discrere Hopfield ner.

4.6.1.1 Architecture of Discrete Hopfield Net _— _
1 in F1 ' ts of processin
The archicecture of discrere Hopfield net is shown in Figure 4-7_. The_Hop’?Eld 's model ;z:\lsc o Emcmié
i i i d the ocher non-inverting. The outputs fr
elements with two Outputs, one lnverung an . ‘ 1ch procesing
element are fed back to the input of other processing elements bur not to irself. Thelco;:necuons ¢ found
1 N . no

10 be resistive and the connection strengeh over it is represented as wj. Here, as such there are n ou% i

1ti inhibi ver .
Tesistors, hence excitarory connections use positive ouipuis and]ﬂhlbl[gl’y csnnecnonsl‘l;lst: in) thcpy .

: l i i ¢ as the input,

i i i sssing elernent is found to be sam :
Conncctions are excitatory if the output of a prace . . Lhey
inhibitory if the inputs differ from the ousput of the processing element. Aco.nneclm;n lberwelefl ;hitftsnits ‘; anﬁ
elements i and j is found to be associated with a connecrion strength wy. 'ljhls weight is ll:;osn.nv Funics) anc
jare both on. On the ocher hand, if the connection strength is negative, it represents the siruat

. i ic, 1 i ij e as wjj.
being on and § being off. Also, the weights are symmetric, 1., the weights wj; are sam i

ini } i ield Net
4.6.1.2 Training Algorithm of Discrete Hopfield , o
Thee exist several versions of che discrete Hopfield net. It should bi‘ noted thar Hopfield’s first description
used binary input vectors and only later on bipolar inpur vectors used. .
For sto?::lngpa sec of binary patterns s(ph, p=1w D where s(p) = (n(ph- . VSilphe - ,5ulp)), the weight
matrix Wis given as

P
wy= 3 2sp) = Ni2glp) = 1, fori #
p:I

112 Associative Memory Networks

For storing a set of bipoar inpur patterns, s(p) (as defined above}, the weight matrix Wis given as

P

wi = ZS;@)I};(}J), fori #j

p=l

and the weights here have no self-connection, i.e., wi; = 0.

4.6.1.3 Testing Algorithm of Discrete Hopfield Net

In the case of testing, the update rule is formed and the initial weighes are those obrained from the training
algorithm. The testing algorithm for the discrete Hopfield ner is as foilows:

rStep 0: Initialize the weights to store parerns, i.e., weights obtained from training algorithm using Hebb

rule.

Step 1: When the activations of the ner are not converged, then perform Steps 2-8.
Step 2: Perform Steps 37 for each inpur vector X.

Step 31 Make the inirial activations of the ner equal to the external input vector X:
yi=x(i=1ron)

Step 4: Perform Steps 5-7 for each unic Y;. (Here, the units are updated in random order.)
Step 5: Calculate the ner inpuc of the nerwork:

Yo =%+ Z Fitji
i

Step 6: Apply the activations over the ner input to calculate the output:

1 if yui> 6
yi =4y if =6
0 if y< 6
where 6; is the threshold and is normally taken as zero,

Step 7: Now feed back (transmir) the obtained ourpur y; to all other units. Thus, the activarion vecrors
are updaced.

I Step 8: Finally, test the nerwork for convergence. J

The updation here is cartied out at random, bur it should be noted that each unir may be updated ac the
same average rate. The asynchronous fashion of updarion is carried out here. This means tha for a given time
only a single neural unit is allowed to updare its outpur. The next update can be carried out on 2 randomly
chosen node which uses the already updated output. It can also be said that under asynchronous operation of
the nerwork, each output node unit is updared separately by tzking into accotnt the most recent values char
have already been updated. This type of updarion is referred to as an asynehronous stochastic recursion of the
discrete Hopfield nerwork. By performing the analysis of the Lyapunov function, i.e., the energy function for
the Hopfield net, it can be shown that the main feature for the convergence of this net is the asynchronous

updation of weighes and the weighes with no self-connection, i.e., the zeros exist on the diagonals of the
weight matrix.

4.6 Hopfigld Networks 113

A Hopfield network with binary input vectors is used to determine whether an input vector ils a “known”
vector or an “unknown™ vector. The net has the capaciry to recognize a known vector by producu'lg a patcern
of activations on the units of che net thar is same as the vector stored in the net. For example, if dae_ input
vector is an unknown vector, the activation vectors resulted during iteration will converge ro an actvation

 vector which is not one of the stored patterns; such a partern is called as spurious seable state.

4.6.1.4 Analysis of Energy Function and Storage Capacity on Discrete Hopfield Net

An energy function genesally is defined as a function that is bounded alnd isa noni_ncrcasing Fuln'ction of the
state of the system. The energy function, also called as Lyapunov funcrion, .dctcrmmes the s:a?mhcy property
of a discrete Hopheld network. The scate of a §ystem fora neural network is the vector of activations of the
units. Hence, if it is possible to find an energy function for an iterative neural net, the net will converge o a
stable set of activations. An energy function Erof a discrete Hopfield network s characrerized as

"

l n n n
Er=—= 3 Y yigjwy— p_ syt)b
23 j=1 i=l i=1
it
If the nerwork is stable, then the above energy function decreases whenever the state of any node changes.

l 1 -—
Assuming that node i has changed its state from ys-k) o yS-H), i.¢., the output has changed from +1to —1 or
from —1 to +1, the energy change A Eyis then given by

stp=t (") - £ (")

W) _ @
_ Z]j(-k}w;j-l-.\‘;—ef (y,‘ - ¥)

j=!
i
= — {nety) Ay
where A y; = yf‘Hl' — y* The change in energy is dependent on the facr that or&l'ir_lc;nc ur:g can |..1pda.te ics
activation at a cime. The change in energy equarion A Er exploits the fact thatyy =y forj# iand

wi; = wy; and wy; = O (symmetric weight property). e
There exist rwo cases in which a change A y; will occur in the accivation of neuron Y;. If y; is positive, then
it will change to zero if

M
xi+ Z yiwii | < B
L _f.:]
This results in a negative change for y; and AEf< 0. On the other hand, if y; is zero, then it will change wo
positive if

n
%+ Z)yWJf >0
j=1

This results in a positive change for y; and AEp< 0. Hence A y; is positive only if net input is posinve arlid
A y; is negative only if net input is negative. Therefore, the energy cannot increase (0 ahy manner As 2 resulr,

[RE—

114 Associative Memery Networks

because the energy is bounded, the net must reach a scable state equilibrium, such that the energy does not

change with further iteration. From this it can be concluded that the energy change depends mainly on the

change in activation of one unit and on the symmetry of weight matrix with zeros existing on the diagonal,
A Hopfield nerwork always converges to a stable state in a finite number of node-updating steps, where

every stable state is found to be at the local minima of the energy function Ex Also, the proving process uses

the well-known Lyapunov stability theorem, which is generally used to prove the stability of dynamic system
defined with arbitrarily many interlocked differential equations. A positive-definite (energy) function £ (y)
can be found such that: -

1. Ef(j) is continuous with respect 1o all the components y; for i = 1 to »;

2. 4 Ef[yd]ldr<0, which indicares that the energy function is decreasing with time and hence the origin of
the state space is asymprotically stable.

Hence, a positive-definite (energy) function Er (y) satisfying the above requirements can be Lyapunov function
for any given system; this function is not unique. If, ar leasc one such function can be found for a system, then
the system is asymptotically stable, According to the I yapunov theorem, the energy function that is associated
with a Hopfiel nerwork is a Lyapunov Function and thus the discrete Hophield necwork is asymprotically
stable.

The storage capacity is another important factor. [t can be found that the numbcr of binary parterns that
can be stored and recalled in a nerwork with a reasonable accuracy is given approximacely as

Storage capacity € = 0.15»
where # is the number of neurons in the nec. Tt can also be given as

"

~

= 2 logy n

l4.6.2 Continuous Hopfield Network

A discrere Hopfield net can be modified to a continuous model, in which time is assumed to be a continuous
variable, and can be used for associacive memory problems or oprimization problems like sraveling salesman
problem. The nodes of this network have a continuous, graded sutpur rather than a two-state binary eutpur.
Thus, the energy of the nenwork decreases continuously with time. The continuous Hopfield necworks can
be realized as an electronic circuit, which uses non-finear amplifiers and resistors. This helps building the
Hopfield nerwork using analog VLSI technology.

4.6.2.1 Hardware Model of Continuous Hopfield Network

The continuous nerwork build up of electrical components is shown in Figure 4-8,
The model consists of » amplifiers, mapping its input voltage #; into an output voleage y; over an activation
function a(w;). The activation function used can be a sigmoid function, say,

1
alru) = ———
{hac) 1 et
where X is called the gain parameser.
The continucus model becomes a discrete one when A — or. Each of the amplifiers consists of an input
capacitance ¢; and an input conducrance g. The external signals entering into the circuit are x;. The external

o

4.6 Hopfield Networks

115
X %, X X,
W Wiz W,
Wn Wy, W,
Wy
Wy W, W,
Y, u,
& a4 G, ar,
_ L _
¥ Y A
¥ ¥ Y, Y,

Figure 4-8 Model of Hopfield network using elecrrical components.

signals supply constant current to each amplifier for an actual circuic. The output of the jth node is connected
to the inpuc of the sth node through conductance 1o, Since all real resistor values are positive, the inverted
node gurputs 7 are used to simulate the inhibitory signals. The connection is made with the signal from the
noninverted ourput if the outpur of a particular node excites some other node. If the connection is inhibitory,
then the connection is made with the signal from the inverted output. Here also, the important symmetric
weight requirement for Hopfield network is imposed, i.e., wyj = wyi and wy; = 0.

The rule of each node in a continuous Hopfield nerwork can be derived as shown in Figure 4-9. Consider
the inpur of a single node as in Figure 4-9. Applying Kirchoff’s current Jaw (KCL), which states that the total
Cutrent entering a junction is equal 1o thar leaving the same function, we get

du; n "
G 7; = zl wy (yi— ud — gni+x = 3. wipyy— Gui+x

j=| i=l

JFE J#

116 Associalive Memary Networks

¥, ¥, ' A
wul W l e W, l
y-uw, (- uw, (y,-udw,
X, Y ooy Y
1 1
—grd;)
ot

Figure 4-9 Inpuc of a single node of continuous Hopfield nerwork.

where

n
Gi= Z wi + gy
=t
J#i
The equation obrained using KCL describes' the time cvolution of the system completely. If each single
node is given an initial value say, #;{0), then the value 1;(s) and thus the amplifier outpur, {8} = @l {f) at
time ¢, can be known by solving the differential equacion obrained using KCL.

4.6.2.2 Analysis of Energy Function of Continuous Hopfield Network

For evaluating rhe stability property of continuous Hopfield necwork, a continuous energy function is defined
such that the evolution of the system is in the negative gradient of the energy function and finally converges
to one of the table minima in the state space. The corresponding Lyapunov energy function for the model
shown in Figure 4-8 is

o
1 " " " 1 n B
Ep= =3 DD = % f+;Zfo”)y
i=]j=I =] =1 4
J#i

where a7} {3) =Au is the inverse of the function y = a(Aw). The inverse of the function a"(y] 15 shown In
Figure 4-10(A) and the integral of it in Figure 4-10(B).

To prove that £ obrained is the Lyapunov function for the nerwork, its time derivative is taken with
weights w;; symmertic:

dy & &t dt dr

re=]

dEr I dEdy & ? dy; " dyidu;
oy S| S it G| L= =Y B
=1 J=1 i=1

J#E

L

4.6 Hopfisld Natworks 117
y |
¥ 1 jaq (y)dy fl
u=a\y]
- -1 -05 065 +1 i
e ——x
0 ~1 o +
(&) 1G]

Figure 4-10 (A) Inverse and (B) integral of nonlinear activation function 4~ (3).

t; = (%) a)

) ._| A , ’ 3
du; - Yda™' i) = la'] (ys)iy"
e A Ay A X o

we per

where the derivative of a~1(3) is a~ ' (3). So, the derivative of energy function cquation becomes
S T A
=" g P) (z)

From Figure 4-10(A), we know thac 2™ ' {y;} isa monomnically increasing function of y; and hence its derivarive
is positive, all over. This shows thar dEf/d.t is negative, and thus che energy funcrion Efmust decrease as the
sysiem evolves. Therefore, if £ris bounded, the system will eventually reach a stable state, where

iy dy,
dr | dr

When the values of chreshold are zero, the continuous energy functian becomes equal to the discrece energy
function, except for the rerm,

)

b
1
IZ G; fﬂ"(y)dy

i=1)

From Figure 4-10(B), the integral of a~1(3) is zero when 3 is zero and positive for all other values of 3.
The incegral becomes very large as y approaches +1 or —1. Hence, the energy function Epis bounded
from below and is a Lyapunov function, The continuous Hopfield nets are best suited for the constrained
optimization problems.

118 Associative Memary Networks

I 4.7 Iterative Autoassociative Memory Networks

There exists a situation where the ner does not respond to the input signal immiediately with a stored rarger
pattern but the response may be more like the stored pattern, which suggests using the firsc response as input
to the net again. The iterative auroassociative net should be able to recover an original stored vecror when
presented with a test vector close to it. These types of nerworks can also be called as recurvent autoassaciative
networks and Hoplield networks discussed in Section 4.6 come under this category.

I 4.7.1 Linear Autoassociative Memory (LAM)

In 1977, James Anderson focused on the developmenc of the LAM. This was based on Hebbian rule, which
states that connections between neuron like elements are strengthened every time when they are activated.
Linear algebra is used to analyze the performance of the net.

Consider an m % m non singular symmetric matrix having “m” mutually orthogonal eigen vectors. The
eigen vecrors satisfy the property of orthogonality. A recurrent linear autoassociator network is trained using
a set of P orthogonal unit vector #1,. . ., #p, where the number of times each vector poing to be presented is
noc the same.

The weight marrix can be determined using Hebb learning rule, but this allows the reperition of some of
the stored vecrors. Each of these stored vectors is an eigen vector of the weight macrix. Here, cigen values
represent the number of times the vector was presented.

When the input vector X is presented, the output response of the net is XW, where Wis the weight maerix.
From the conceprs of linear algebra, we know thar we cbrain the largest value of | XW]| when X is the cigen
vector for the largest eigen value; the next largest value of | XW| occurs when X is the eigen vecror for the next
largest eigen value, and so on. Thus, a recurrent linear autoassociator produces its response as the stored vector
for which the inpur vactor is most similar. This may perhaps rake several iterations. The linear combination
of vectors may be used to represent an input partern. When an input vector is presented, the response of the
net is the linear combination of its corresponding eigen values. The eigen vector with largest value in this
linear expansion is the one which is most similar to that of the inpur vectors. Although, the net increases
its response corresponding to components of the inpur patrern over which it is trained most extensively, the
averall output response of the system may grow wichout bound.

The main conditions of linearity berween the associarive memories is that the set of input vecror pairs and
output vector pairs (since, autoassociative, both are same) should be mutually orthogonal with each other,
Le., if"AP” is the input pattern pair, for p = 1 1o P, then

A,-A} =0, forallizj

Also if all the vectors A, ate normalized to unit length, Le.,

Z(ﬂi)§=1. forallp:] bl

i=]

then the ourpur ¥; = A,, i.e., the desired outpur has been recalled.

l 4.7.2 Brain-in-the-Box Network

An extension to the linear associacor is the brain-in-the-box model. This model was described by Anderson,
1972, as follows: an activity pattern inside the box receives positive feedback on cerrain components, which

4.7 lterative Autoassociative Memory Natworks 119

has the effect of forcing it outward. When its clement start to limit (whea it hits the wall of the box),. it
mioves to corner of the box where it remains as such. The box resides in the state-space {each neuron oceupies
one axis) of the network and represents the saturation ljmits for each state. Each component here is being
restricted between —1 and +1. The updation of activations of the units in brain-in-the-box model is done
simultaneously. . _

“The brain-in-the-box model consists of n units, each being connected to every other unit. Also, Fhere
is 2 trained weight on che self-connection, i.e., the diagonal elements are set to zefo. ?Fhere also exists a
sclf-connection with weight 1. The algorithm for brain-in-the-box model is given in Section 4.7.2.1.

.

4.7.2.1 Training Algorithm for Brain-in-the-Box Mode!

rStep 0: Inicialize the weights to very small random values. Initialize the learning rates & and .
Step 1: Perform Steps 2-6 for each training input vector.

Step 2: The initial activations of the net are made equal w the external input vector X:
Yi =X

Step 3: Derform Steps 4 and 5 when the activations continue to change.
Step 4: Calculase che net input:
n
Pig =yt E}'jwﬂ

j=I

Step 5: Caleulate the outpur of each unic by applying its activarions:

1 if =1
}:, =)lw— .lf -'1 Syjuj S 1
=t if = -1

The vertex of the box will be a stable stace for the activation vector.
Step 6: Update che weights:

wi(new) = wylold)+B yi |

L

I 4,73 Autoassociator with Threshold Unit

If a threshold unit is set, then a threshold Function can be used as the activarion Func['loln for an iterative
autoassociator net. The testing algorithm of autoassociator with specified threshold for blpo!ar vectors ar}xld
activarions with symmetric weights and no self-connections, i.c., wij = wji and wj; = 0 is given 1n the
following section.

120 Associative Memary Networks

4.7.3.1 Testing Algorithm

| Step 0: The weights are inidalized from the training algorichm to store patterns (use Hebbian lmning).—l
Step 1: Perform Steps 245 for each testing inpur vector,
Step 2: Set the activations of X.
Step 3: Detform Steps 4 and 5 when the stopping condition is false.
Step 4: Update the activarions of all units:

"
i 3 x> 6
j=l
fi

X = x if Zx‘,wq =0;
=
Lid

~1f Y x> 6;
j=1

The threshold 8; may be taken as zero.
l Step 5: Test for the stopping condition. !

The necwork performs ireration unril the correct vector X matches a stored vector or the resting input marches
a previous vector or the maximum number of irerations allowed is reached.

I 4.8 Temporal Associative Memory Network

The associative memories discussed so far evolve a stable state and stay there. All are acting as concent
addressable memories for a set of seatic patterns. Bur there is also a possibilicy of storing the sequences of
pateerns in the form of dynamic transitions. These types of paserns are called as semporal parterns and an
associative memory with this capability is called as a temporal associative memory. In this section, we shall learn
how the BAM acr as temporal associative memories. Assume all temporal patterns as bipolar or binary vectors
given by an ordered ser § with p vecrors:

S:{:I,sz,...,:,-....,:_,] p=1lwh

where column vectors are a-dimensional. The neural necwork can memorize che sequence S in its dynamic

state transitions such thar che recalled sequenceiss; = 5 = ... > 5 > ... — T R
5i~* ... or in reverse order.
A BAM can be used 1o generare the sequence S = {s1,52,.,.., 5, ... »5p}. The pair of consecurive vecrors s,

and 54 ase taken as hereroassociative. From this point of view, 5 is associated with s, 52 is associaved wich
53 .. and 5, is again associated with 1. The weight macrix is then given as

»
W= (ser))"

k=1

A BAM for remporal pateerns can be modified so that both layers Xand ¥ are described by identical weight
marrices W, Hence, the recalling is based on

x=fW) y=f(W)

4.10 Solved Problems 121

where (-} is the activation funcrion of the network. Also a reverse order recall can be implemented using
the transposed weight matrices in both layers X and ¥. In case of temporal BAM, layess X and Y update
nonsimultaneously and in an alternate circular fashion.

The energy function for a remporal BAM can be defined as

i

Ef= -— ZJH_] W,
k=1

The energy function Efdecreases during the temporal sequence rettieval s; ~ 52 — ... ~> 5. The energy is
found to increase stepwise ax the transition §, — s1 and then ir continues to decrease in the follawing cycle of
(p — 1) rewievals. The storage capacity of the BAM is estimated using p < min{m, n). Hence, the maximum
length sequence is bounded by p < n, where » is number of components in input vector and m is number of
COMPONENts i QUIPUE VECIOT,

l 4.9 Summary

Pattern association is carried our efficiendly by assoctative memory networks. The two main algorithms
used for training a partern association network are the Hebb rule and the outer products rule. The basic
architecture, Howcharr for training process and the training algorithm are discussed in detail for autoasse-
ciative net, hereroassociative memory net, BAM, Hopfield net and iterative nets. Also, in all cases suitable
testing algorithm is included. The variations in BAM, discrere BAM and continuous BAM, are discussed
in this chaprer. The analysis of hamming distance, energy function and stworage capacity is done for few
networks such as BAM, discrere Hopfield network and continuous Hopfield network. In case of itera-
tive autoassaciative memory network, the linear aurcassociative memory, brain-in-che-box model and an
autoassociator with 2 threshold unit are discussed. Also temporal associative memory nerwork is discussed

briefly.

l4.1o Solved Problems

1. Traip-a heteroassociative memory network using

/He' b rule to store inpur row vecror § =

' (51, 52, 53, %) 1o the outpurt row vector £ = (1),).
The vector pairs are given in Table 1. e

Table 1 R
Inputtargets s 5 5 sﬂ 1 2
w1 0 1 o1 0
™ 1 0 0 410
3 Y 1.0 o0 lo 1
4t ¢ 0 1 1i0 1

Solution: The nerwark for the given ploblem is as
shown in Figure 1. The taining algorithm based on

Hebb rule is used to determine the weights. Figure 1 Neural net.

122

Associative Memory Networks

For Ist input veeror:

Step 0: Initialize the weights, the initial weights I
are taken as zero.

Step 1z For fiest pair (1, 0, 1, 0):(1, 0}
Step 2 Set the activations of Inpuc units:

=1 »n=0 =1 x=0 “

Step 3: Ser the activarions of ourput uniz: "t

n=1 p=0 ‘i
Step 4: Update the weights, }‘5
wii{new) = wi{old) Hlx;y
wyi{new) = wy; (old) + o = Olb\l x1l=1
wni (new) = war{eld) + xy =“0-H|0 x1=0
ws(new) = s (old) + x50 = 041 x 1= 1
wy| (new) = wyy{old) + x4y = 0-}-l 0x1=0
wa(new) = wizlold) + 252 =0+ 1% 0=10
o (new) = wyfold) + xyp2 =0 +0x 0 =0
wiz(new) = wy(old) + 133 =0+ 1x0=0
I wyz{new) = wyalold) + x4n =04+ 0x 0 = Ol

For 2nd input vector:
The inpue—~outpur vector pair is (1, 0, 0, 1):(1, 0)

x=1 x=0 x3=0 x5=I,
=1 n=0

The final weights obrained for the inpur vecror pair
is used as mitial weight here:

wiinew) = wplold) +xpy =14+ 1x1=2
wy) (new} = wg fold) + x4y =0+ 1 x 1 =1

Since x2 = x3 = 32 = 0, the other weights remains
the same.
The final weights after second input vector is pre-
sented are

wy=2,um=0u =1 wy=1
wa=0,wpn =0, w2=0, wp =0

For 3rd input vector:
The input—ourput vector pair is (1, 1, 0, 0):(0, 1)
si=lL =1 65=0 x5=0 =0 =1

Training, using Hebb rule, evolves the final weights
as follows:

Since y| = 0, the weights of y are going to the same.

' Computing the weights of 32 unit, we obtain

wia(new) = wplold) + x, =04+ 1x1 =1
uns (new) = mz(ol&)+xm=0 +1x1=1
wip(new) = waz(old} +x39, =0 +0x 1 =0
wqz(new} = wp(old) + x4 =04+ 0x 1 =0

The final weights after presenting third ihpu: vector
are

wnn =2, w1 =0, w3 =1, wgy =1
wiz=1l,wp=1,w=0wp=0

For 4th input vector:
The input—output vector pair is (0, 0, 1, 1:(0, 1)

x=0x=0xn=Lxy=1L,n=0n=1
The weights are given by

way(new) = wiplold) + x5, =0+ 1x1=1
wia{new) = wyy(old) + x4y =0+ 1x 1 =1

Since,x = =n =0, r.h_e other weights remains
the same. The final weights after presenting the fourch
input vector are

wy =2,un5 =0,w3 = 1wy =1
wr=luwy=lwy=1lLwzp=1

Thus, the weight matrix in matrix form is

wn oWz 21
01
W= unl wn -
w3 w3 11
Wy wg 11

‘2_. /Train the hereroassociative memory network using
“ourer products rule to store input row vectors s =
(11552, 53,54) 1o the ourpur row vecrors £ = (41, &)
Use the vector pairs as given in Table 2,

4.10 Solved Problems

123

Table 2

Inputandtargers 51 » 5 s« H B

1%t 1 6 1 0 1t O

2md 1 0 0 1 1 0

3 1 1 0 0 0 1

4th 0 0 1 1 0 1
Solution: Use o‘xi:—er’pr,od.ucu.d.c 1o determine the
weight matrix: ¢

P
W= E:T(JJ) Hp)
=l
For Ist pair: The inpur and outpue vectors are s =
(1010}, e=(10). Forp=1,

T (p) p) = s™(1) /1)
1

i
=T]
L |
—
(=]
—
x
e}
I

4%\

For 2nd pair. The input and outpur vectors are 5 =-

(1001), r=(10).Forp=2,
T (o) p) = 5T (2) €2)

00
[] 0]1)(2:. 00

1
0
0
Ui 1 04y,

For 3rd pair. The input and outpue vectors ate 5 =
(1100),z=(01). Forp=23,)\{F\‘

s, M

Toap=~ee T
1 o1
1 D1
= 0 [0 l]l:-c1= 00
0 4x1 09 4%2

For 4th pair: The inpur and ourput vecrors are » =
0011),s=(01). Forp=4,

5T () p) = < (4) ()

[0 1]1x1=

4x1

—_—— D O
oo oo
—— O O

4x2

The final weight matrix is the summation of all the
individual weight matrices obtained for each pair.

4
W= () p)
p=t
= T} + 5T + 7 3)e(3) + T (4)ef4)
10 10 01 00
00 00 01 00
=11 o|Tloo]T{oolT]o
00 10 00 01
21
01
W=1,,
11

3. Trainz heteroassociative memory network to store
the inpue vectors 5 == (5|, 52,13, 14) to the ourput
vectors £ = (fy,). The vector pairs are given in
Table 3. Also test the performance of the network
using its training input as testing input.

Table 3

Inputandtargets 5 s $3 4 0 2
1 I 0 0 0 0
nd 1 1 0 0 0 1
3 0 0 0 1 1 0
4th o0 L 1 1 0

Solution: The nerwork architecture for the given
inpur—target vector pair is shown in Figure 2. Tramn-
ing the nerwork means the determinarion of weights
of the nerwork. Here ourer products rule is used to
determine the weight.

The weight marrix W using outer products rule is
given by

P
W= Z::T(P) !(P)

p=1

124

Associative Memory Networks

Forp=1104,
4
W= 5T dp)
p=1
= T} + T @)2) +T3)A3) + o (9)44)

1

0

0

0

+[
0

[0 1]+

[01]

-_0 o O

—

—

(=]

[E—

+
—_— OO -~

0
0
. [t o]
]

[0 1] 0t 00 00
_lo o 01 00 00
=loo[Tloo[T|oo]T|1 0

00 |00 10 10

[0 27

01

=110
L.2 0_

Xy

Figure 2 Nerwork architecrure.
Testing the Network
Method I
The testing algorithm for a heteroassocjative mem-
ory network is used to test the performance of the
net. The weight obtained from training algorithm s
the initial weight in testing algerichm.

For 1st testing inpur

rStep 0: Initialize the weights: I
wyy w2 0 2
we| ¥ w2 | _ 0 1
w3t w 1 0
Wil w4 2 0

Step I: Pedorms Steps 2-4 for each testing
INPU—OULPUE Vector.

Step 2: Set the acrivarions, x = [10 0 0].

Step 3: Compute the net input, # = 4, m = 2.
Fori=1lrw4andj=1t02:

n

Yinj = Z: Xl

=1

m
Yiml = Exiwr'l
i=l

= xy101] + xauny + x3w3) + x41043
=1x0+0x040x140x2=0

"
Y2 = Z: AWy
i=t

= xjw12 + xpwag + x3ws + xwsz
= x240x | +0x04+0x0=2

Step 4: Applying activation over the net input to
calculzre the ourput,

by =f(}'r'ul) =f(0) =0
L 2 =flm2) =f(2) =1 J

The outpur is (0, 1] which is correct response for firsc
inpur partern.

For 2nd testing input

Ser the activation x = [1 1 0 0. Computing the net

input, we obrain
Fim = x1w() +own) + o gws) + x4wh
=04+0404+0=0
Fim2 = X2 + xw + 2awsn + xqws
=2414+04+0=3

4,10 Solved Problems

125

Compure the outpus by applying activations over net
input,

p=flm)=f0)=0)
n=Fflm=3=1

The outpur is {0, 1} which is correct response for
second input pattern.

For 3rd testing input
Ser the activation x = [0 0 0 1). Computing net
inpur, we obrain

Fiad = X301 Foway +xws) 4w
=0+0+0+2=12

Yim2 = x1w12 + w2 + X3w3 4 xqlg
=0+0+0+0=0

Caleulare outpuc of the network,

n=flm) =2 =1
)'2=f(yf112) =f(0)_—'0

The ourpur is [1 0] which is correct response for third
testing inpuc pattern,

For 4th testing input
Ser the activation x = [0 0 1 1]. Cakeularing the net
input, we obrain

Fiml = X1 + own +x3ws) +xiws
=0+0+142=3

Fing = Xyun2 + Xz + X313 + xqt4]
=0+0+04+0=0

Calculare the output of the network,

1 =S} =f3) =1
P =f(]'|'rr2) =f(0) =10

The outpur is [1 0] which is correct response for
fourth resting inpur pareern.

Method 11

Since net input is the dot product of the input row
vector with the column of weight matrix, hence a
method using matcix multiplication can be used to

test performance of nerwork. The initiat weights for
the nerwork are

| S e ==
[T == R

The binary activations are used, i.e.,

1 if x>0
f(x)=10 if x<9

For Ist eesting inpur
Ser the activation = {1 0 0 0L The net input is
given by yim = xW (in vectoc form):

0 2
01
[]Irrl]irrZ] =l 00 0] x4 10
20 4x2
—{0+0+0+0 2+0+0+0]

={0 2]
Applying activations over the net input, we get

hpl=0 1

The correce response is obrained for fizst testing input
partern,

For 2nd testing inpus

Ser the activation x = [1 1 @ 0L The ner input is
obrained by

l}'iul _J’r’n?jl = [1 10 0]

[I =]

2
)]
0
0
=[0+04+04+0 2+ 14040
=[0 3]

Apply activations over the netinput o obain curpur,
we ger

[yirrl. _yinl] = [0 l]

The correct response is obtained for second testing
inpuc.

126

Associalive Memory Networks
For 3rd testing inpus The weight matrix is
Ser the acrivation x = [0 0 0 1]. The net inpur is
; 10 2
obtained by .
‘ W= 01
02 Tl1 0
01 20
[_yinl J"J'n?.] = [0 00 1] 10
2 0 The net inpuc is caleulated for the similar vector,

=[0+0+0+2 0+0+0+0]
=[2 0]

Applying activations to calculate the outpur, we get
i nl=M 0

Thus, correct response is obrained for third testing
input.

For 4th testing input

Sertheacrivationx = [0 @ 1 1]. The netinputis
calculated as

0 2
o1
[_yfn]J’irll]'—[o 01 1] 10
20

=[04+0+1+2 04+04+040]

=[3 0]

The ourpur is obrained by applying activations over
the net inpuc:

W nl=0 0]

The correct response is obtained for fourth test-
2

ing input. Thus, training and testing of 2 hecere

associative nerwork is done here,

~

4. For Problem 3, test a heteroassociative nerwork
with a similar test vecror and unsimilar test
VECIoL

Solution: The hereroassociative network has to be
tested with similar and unsimilar test veceor.

With sinﬁ g test vecsor. From Problem 3, che sec-
ondinputvectorisx = [1 10 0] with targety = [0 1].

o test the nerwork with a similar vector, making a
chafige in one compotrene of the input vector, we get

T={0100]

02
01
[yint yiw2]l = [0100] 1 0
20
=[0+0+0+0 04+14+0+40]
=[0 1]

The output is obrained by applying activations over
the net inpue

o pl=[0 1]

The correct response same as the rarger is found,
hence the vecror similar to the inpur vecror is

tecognized by the nerwork.

With unuimilar-smput vector: The second input
vectorisx=1[1 1 0 O]withrargety=1[0 1).To
test the nerwork with unsimilar vectors by making a

. T e ey et]
change in\rwo component of the inpur vecror, we get

x=[0 1 1 0]

The weight matrix is

W=

[S R)
(=R i N]

The net inpur is calculated for unsimilar vector,

g

[SE T - R

[¥inl 3im] = 1011 0]

S S~

e % =[0404+140 04+140+0]

=[1]

The output is obrained by applying activations over
the net input

n pl=0 1

4.10 Solved Problems

127

The correct response is not obtaine r
unsimilar to the input nerwork is presented to the

¢S, Train a heteroassociative neework to store the,
inpur vectors s = (51 52 f3 54) 10 the ourput vec-

tor ¢ = (fy #2). The taining input-target output
vector pairs are in binary form. Obrain the weight
vector in bipolar form. The binary vector pairs are
as given in Table 4.

Table 4 ‘

51 52 535 54 h)
¥ 1 ¢ o 0 0 1
ad 1 o 0o o 1
3 ¢ 0 O 1 1 0
4th ()] 1 ! 1 0

Solution: In this case, the hybrid representarion of
the network is adopted 1o find the weight matrix in
bipolar form. The weight matrix can be formed using

—_—

wpy = @2x1-DEx0-1) _°
+@2x1=D@Ex0-1b
+(2x0-12x1-1)
+@x0-DEx1-1)
=—1-1-1~-1=—4
wp=02x1=1D2x1-1)
+x1-D2x1-1) _
+@x0-12x0-1) * 0o
F@x0-D2x0-1
=14+1§1+1=4 -
wp = —1x ~1+1x—1+-1x1+-1x1
=1-1—-1-1=-2
wpm=—-1x14+1xl+-1x-1+-1%x-1
=-1+1+1+1=2
wy =—tx—l+—-lx—-l+-1x1+1xl
=i4+1-14+1=2
w=—lx1+-1xl4+-Ix-14+1x-]
=-1-141-1=-2
wy=—-1x—-1+-Ix-1+1x1+1x1
=141414+1=4

i

wp=—tx1+—-1xl+lx—-1+1x-1
=—l-i-1-1=—4

The weight marrix Wis given by

wi w2 —4 4
wny wnl|_|-2 2
W= w3 032 2 -2
wi Wi 4 -4

6. Traifi a hereroassociative network to store the

{ven bipolar input vectors s = (57 52 53 54} 1O

the outpur vector £ = (# 22). The bipolar vector
paiss are as given in Table 5.

Table 5

31 2] 54
1 i —1 -1 -1 -1 1
and 1] -1 -1 -1 1
3d 1 -1 -1 1 [
g 1 - 1 1 1 -1

- . ’
~ -+ 7 golution: To store a bipolar vector pair, the weight

‘imatrix is
P
wij = Z I,'(P)G(P)

p=1

If the outer producrs rule is used, then

W=y s (phip)
?

For Ist pair
s=[1 =1 =1 -1}, r=[=11]
1 -1 1
—1 1 =1
:T(l)dl) = 1 [—1 l] = 1 =1
-1 1 -1

For 2nd pair

1 -1 1

1 11

To=| _, |-t =] 4
-1 1 -1

128

Associative Memory Networks

For 3rd pair
s=[-1 =1 -1 1, t=[—1]

-1 -1 1

-1 b1 1
S =|_[| -td={_,
i 1 -1

For 4th pair

s={~1 =1 1 1], r=[1l -1]

-1 -1 1
T -1 -1
s@dd) = | [t -1]= N
1 1 -1
The final weight marix is
-1 1 -1 1
! 1 -1 1]
3T _ - -
W‘Z‘ L Y e
=l 1 -1 I -1
-1 1 -1 1
-1 -1 1
NS T Rl I
1 -1 1 =1
-4 4
-2 2
Tl 2 =2
4 —i

7. /For Problem 6, rest the performance of the ner-
~" wark with missing and mistaken data in che st
VECIor.

Solution: With missing data

Let the tese vector be x = [0 1 ¢ —1j with
changes made in two components of second inpur
veceor [1 1 -1 —1}, Computing the net inpur,
we get

-4 4
-2 2
[pim gyl =10 10 =1} | 5
4 —4
—[0—240—4 0+2+0+4]

=[-6 8]

Applying activacions to compute the outpur, we get

7 nl=011]
Thus, the net has recognized the missing dara,

With mistaben data; Lec the test vector be x =
[~1 1 1 —1] with changes made in two com-
ponents of second input vector [1 1 —1 —1].
Computing the net inpur for the test vector, using
the final weights obrained in Problem 6, as imtial
weight to test the test vector, we get

-4 4
-2 2
[)’:’ul yr'uZ]—[_l i1 -1] 1 -2
4 —4

=[0 0]

Applying the activations over the ner inpur to caleu-
late the oucpur, we obtain

n p1=10 0]

Thus, the ner does not recognize the mistaken data
becatise the cutput obrained 10, 0] has 2 msmartch
with the warget veetor [—1 1),

s

8. Train the autoassociarive nerwork for inpur vecror

" [—=! 1 1 1] and also test the network for the
same inpus vector. Test the auroassociative net-
work with one missing, one mistake, two missing
and owo ristake entries in test vecror.

Solution: The input vecroris x = [-1 1 | 1].
The weight vector is

4xl
1 -1 -1 —1
_ |- 1 1 1
-1 1 1 l
-1 1 1 1 Axd

Testing the network with same inpus vector: The test
inpucis [—~1 1 1 1]. The weight obrained above

4.10 Solved Problems

129

is used as the initial weight here. Computing the
input, we get

Ji=x-W=[-1111]

LLL.
——
—
—

=[—4 4 4 4

Applying activations over the net input to calculate
the outpur, we have £

-
oo
N

1 if yp; >0 o
ff:f(’f"f)=‘ -1 if y;,;é)() \0«‘_‘,,“

=[-1111]
Hence the cotrect response is obrained.
Testing the network with one missing eniry

¢« Testinput x = [0 1 1 I}Ttamputing the
inpur, we get

Fp=x-W=[0111]

I 1
——
—_——
—_
—— -

=1-3 3 3 3]

Applying the activations, we ger 7 = [—1 |
1 1] which is the correcr response.

Test input x = f—1 1 0 1]. Computing net
input, we obrain

g =x"W

=[-3 3 3 3]

Applying the activations, we ger yj = [-1 1
1 1] which is the correcr response.

Testing the network with one mistake entry

* Tescinputx={—1 —1 1 1]. Computing net
inpur, we get

Yoj=x-W

‘{r

=[-1 -11 1]

L
—
—_ e
—— et

"=[-221212)

Applying the activations, we ger y; = [—1 1
, 1 1] which is the correct response.

o Test input x = {1 1 1 1]. Computing net

input, we get

J’-‘nj="'w=“ 111]

[
—
—
——
—

=[-2222]

Applying the activations, we get y=10-11
1 1] which is the correct response.

Testing the network with fwo missing ensry

* Test input x = [0 @ 1 1]. Compuring net
inpur, we ger =

1 -1 -1 -1
-1 1 1 1

= W=[0011

Yo =% [o1
-1 1 1 1

=[-22212)
Applying the activarions, we gety = [-1 1
1 1] which is the correct response,

* Testinput ¥ = [—1 0 @ 1I]. Computing net
inpur, we obtain

J‘r‘nj=x'w
I ~1 =1 =1
1 1 1 1
={-1 001
L] -1 1 1 1
-1 1 1 1
=[(-2 2 2 2]

Applying the activations, we get 3 = [~1 1
1 1} which is the correct response.

ST eu b e e 0D N L e -

oy

130

Associative Memory Networks

Testing the network with two mistzken enrry
Testinputx=[-1 —1 =1 1]. Computing net
input, we obtain

Fig =2
1 -1 -1 -1
| U B |
===l =Uar o
-1 1 1 1
=[0 ¢ 0 0] ; :

Applying the activations over the net input, we get
¥ =10 0 0 0] which is the incorrect response.
Thus, the network v(u_h_nv;o_r‘n_lm not recog:-

nized.

—_—

9. /’Zheck the auctoassociative network for inpuc

N / vecror {1 1 —1]. Form the weight vector with

nao self-connection. Test whether the net is able to
recognize with one missing enrry.

Solution: Input vectorx =[1 1
vecror is

—1]. The weight

W= Ty = r 1 -1

1 I -1
= 1 1 -1
-1 -1 1

The weight vector with no self-connection (make
the diagonal elements in the weight vector zero) is
given by
[
R |
W= IN . 0 "—.l
~ .
-1 =1 0

Testing the nenwork with ane missing ety

* Testinputx=[1 0 —1]

0 1 -1
}'.‘,,J;=J-"W=[1 0 -1] 1 0 -1
-1 -1 0

=01 2 ~1]

Applying the acrivations, wegery; =[1 1 —1]
hence a correcr respense is obtained.

Testinpucx={1 1 0]

0 1 -1
Yo =x-W=I1 1 0] 1 0 -1
-1 -1 0

=011 -7

Applying the activations, wegety; = [1 1 —1],
hence a correct response is obrained.

/].0.”/Usc outer products rule to store the vectors

[1 1 1 1Jand{—1 1 1 —1}iman auro-
associative necwork. (a) Find the weight matrix
(do noc sex diagonal term to zera). (b) Test the
vectorusing [I 1 1 1] as inpur. {c) Test the
vector[—1 1 1 —1]asinpuc {d) Test the net
using [1 1 1 0] as inpur. (e} Repeat (a)-(d)
with the diagonal terms in the weight marrix w0
be zero.

Solution:

Weight marrix for {1 1 1 1}is

Wi =) (hp)

1 1111
1 111
=1, 11t 1]= R
1 1111
Weight matris for[—1 1 1 —~1}is
-1
Wom=) =1 | =111 -1
__.1_‘
1 =1 =1 1]
I T
-1 1 1 ~1
} -1 -1 1]

\-"T € wel 1X 10 store two vectors is ‘
\—\ﬁ-_’__j

W=t +uy

V111 1 -1 <1 1
~ IR 1 1 1 -
Slivra [Tl 1 1 -
1111 P -1 -3 1

)t

4.10 Solved Problems

131

Tesevectorx = [—1 1

N O
OO
[S % g o}
o O

Test the vector using f[1 1 1 1] as input

Test vector x = [1 1 1 1). Computing ner
input, we obtain

Fp=x-W=[1 11 1]

[38 Jee- R on T SN
o N O
[== I S I S)
OO

=[4 4 4 4

Applying the activations to caleulate outpur, we
gery = [1 1 1 1], hence cortect response is
obtained.

Tese the vector wsing (—1 1 1 ~1jas inpret

input, we obtain

Y =x-W=[-111 -]

[e R SN
=T ST 36 Y o]
SO

=f{—4 44 —4)]

Applying the activations to calculare oucpur, we
gery; = [-1 1 1 =17, hence correct response

is obrained.

Test the wes wsing {1 11 0] as inpue
Test vector x = [1 1
input, we obtain

y,-,,,-=x-W=[1 I1 0]

MO oM
[=- T oS I o R o
[ar T SR 6 B o}
OO

- =102 4 4 7]

Applying the activations, we get y=1[1

1 1], hence the known response is obtained.

Repeat parts a-d with diagonal element in weight -

matrix set 1o zerp

1 —1]. Computing net

Mo O

i 0]. Computing nec

(i) The weight macrix is

2002
022¢0
W_DZZO
2002

(i) Test che vector usingx = [1 1 1 1]as
input. Compuring nec input, we obrain

000 2
0020

pp=x W= 1L o5 0o
2000

=[2222

Applying the activations, we get 3 = b 1
1 1], hence correct response is obtained.

(i) Test the VCCEOI'.ITSTI‘Tgx =1=T 171 -1}

as input.
0002
ao0z2o0
py=x-W=[-111 1] 0200
2000

= {~21212-7]

Applying the activations to calculate aurpur,
we get j; = [-1 1T 1 =1}, hence an
unknown response is obrained.

(iv) Test the vecor usingx = {1 1 T 0]as

inpur.
00602
0020
Fy=x-W=[1110] 0200
2000

It

0222

Applying the activations o calculate output, we
get 3y = [—1 1 1 1}, hence an unknown
response s obrained,

S

11. Find the weight matrix required to store the
/lw:mrs 11 -1 =1,[~1 1 1 —1]and
(-1 1 -1 1]linto W, W3, W3 respectively.
Calculate the roral weight marrix to store all the

132 Associative Memory Networks
vector and check whether it is capable of recog- 1 -1 1 =1
nizing the swd . Let the weight -1 1 -1 1
marrix be with no self-connection. i S S TS
~- -1 1 1
Solution: For the fistvector [1 1 —1 —1} - '
With no self-connection,
1
. - - -
W= T pulp) = R o
- Wi = -1 0 -1 1
~1 1 -1 0 -1
11 -1 -1 -1 1 -1 0
1 1 —_— —_ . . .
=1 } i The total weight matrix required 1o store ail this is
-1 -1 1 1 W="Wip+ Wz + W3p
B A
With no self-connection, 0 -1+ .
- 1 0 -1 -1 + -1 0 -1 1
0 1 -1 -1 -1 -1 0 1 1 -1 0 -1
_ -1 -1 1 0 -1 1 -1 ¢
Wo—| 1 0 -1 - - -
w=(_1 1 o 1 0 -1 -1 -1
-1 -1 1 0 - -1 0 -1 -1
-1 -1 0 -1
For the second vecror [—1 1 1 —1] -1 -1 -1 0
1] Testing the network
W2=ZJ’T(P)‘(P)= i -1 1 1 —1] * With firscvectorx=[1 1 —1 —1]. Nerinpuc
is given by
-1
1 -1 -1 1] Inj=x- W
I S I T 0 -1 -1 -1
I I O T N R] A
1 -1 =1 1 et -t 0
= -1 -1 -1 0
With no self-connection, =11 -1 -1
0 -1 -1 1 ApPlyinactivations,wcgetyj=[1 1 -1 ~1]
3 which is the correct response.
Wao = 1 0 1 -1
0 -1 1 0 —1 * With second vector x = [-1 1 1 ~I1]. Ner
1 =1 =1 0© inpuc is given by
For the third vector [~1 1 —1 1] Yy =x- W
. 0 -1 -1 -1
- -1 0 -1 -1
. =[—-1 1 1 —1]
W= o= _y| =11 -1 I
X -1 -1 ~1 0

4.10 Solved Problems

Applyingactivations, wegety; =[-1 1 1 — 1]
which is the correct response.

« With thidvector ¥ =[—1 1 —1 1]. Com-
puring net input, we get
yl'rrj=x'w
0 -1 -1 —1
-1 0 -1 -1
U I |
-1 -1 -1 0
=[-11 -1 1]

Applyingactivations, wegery; = [-1 1 —1 1]

which is the correct response.

Thus, the nexwork is capable of recognizing the
— - _

YECIOTS,— — -~ T

rynstruct an autoassociarive network to store

- vectors [—1 1 1 1]. Usq autoasso-
ciative nerwork to test the vector with three
missing elements.

Solution: The input vector isx = [—} 1 1 1]
The weight matrix is obrained as

-1
1

W= 5T(pelp) = . [-1 11 1]

P

1

I —1 =1 =1 /7
-t
i S T S B |
-1 1 1 1

//A T

The weight matrix with no self-connection is
:

0 1 -1 -1
-1 0 1 1
Wo=1 _ 1 o
-1 1 1 o

Test vecror with three missing elements

* For cest input vector x = [-1 o 0 0) the net
input is calculated as

y,—,g;-—"x-W

=[-100 0]

=111

-Applying activations, we get y; = -1 111}
i.e., known response is obtained.

+ For test input vectorx=[0 0 0 1]. Compue-

ing net inpur, we obtain

R\ A X
Yy =% :\ﬁc"\i{\“
R .

rb@@y,ﬂ 0 -1 =1 -1
“0% oy -1 0 1 1
-1 1 0 1
-1 1 1 0

N
==l 110 2

Applying activations, wegety; = [—1 1 1 — 1],
i.¢., unknown response is obtained. Ierate the net-
work again using the net input calculated as inpur
vector:

0 -1 -1 -1
-1 0 1 1
=t v v Al T gy
-1 1 1 @0

=[-2 22 3]

Applying activarions, wegery; = [~1 1 1 1],
i.e., known response is obrained after iterarion.
Thus, iterative autoassaciative network recognizes
the test paccern. Similarly, the nerwork can be
tested for the test input vecrors [0 1 0 0] and
EIO 01 0]
L%ﬁ:@suuct an autcassociative discrere Hopfield
—therwark wich inpur vector [1 1 1 = 1}
Test the discrere Hopfield nerwork with miss-
ing encrics in first and second components of
the stored vector.

Solution: The input vectoris x = [1 t 1 —1].
The weighr marrix is given by

1
W= o) = i n11 -1
~i

134

Associalive Memory Networks

TR R G
[0 S T S G
B R T s

-1 -1 -1 1

The weight marrix with no self-connection is

01 1

W= I 0 1 -1
1 1 0 -1

-1 -1 -1 90

The binary representarion for the given input vec-
tris [I 1 1 0]. We carry out asynchronous
updation of weights here. Let it be Yy, Ys, Y3, Ys.

For the test input vector with two missing entries in
Sirst and second components of the stored vector,

leeration 1

l Step 0: Weights are inirialized 1o store patterns:

0 1 I -1
W 10 1 -
1 I 0 -1
-1 -1

-1 0
Step }: The input vectorisx = [0 0] 01.
Step 2 For this vecory=[0 O [0]

Step 3: Choose unir Y, for updating its activa-
tions:

4
Y =%+ Z)ywjl
j=1

=0+[00 1 0] =04+1=

— o o
—

Applying activations we get yim > 0 =
7+ = L. Broadeasting y) to all other units,
we get

y={l 0 1 8) > No convergence

Step 4: Choosing unit Y4 for updating its activa-
tions:

4
Yind ="4+Z it
i=
-
=0+[1 01 0] ::
0

=0-1-1=-2

Applying acrivations we get yimg <0 =
4= 0. Therefore, y=[1 0 | 0] —
No convergence.

Step 5: Choosing unit Y3 for updating its activa-

4.10 Solved Problems

135

Thus, the output y has converged with vector x in this
iteration iself, But, one more icerarion can be done
to check whether further activations are there or not.

fteration 2

rStep 0: Weights are initialized to store patterns. 1

0 1 1 -1
ro0 1 -

A T
-1 -1 =1 0

Step I: Theinputvectorisx=[1 1 1 @]

Step 2: Forthisvectory=1{1 1 1 0).

Step 3: Choosing unit Y, for updating its activa-
tions:

4
Yy =x 4 ZJ{,‘""J’
j=

Applying activations we get yim >0 =
y3 = L. Therefore, y=[1 1 1 0).
Step 6: Choose unit Yy for updation.

4
Fm=x+ 1 yup
j=t

=0+4[1 1 1 0]

— o 3 —

Applying activations we get yp > 3 =
L 2= 1. Therefore, y={1 1 1 0 J

Thus, furcher iterations do not change the activation
of any unir.

%4. orstruct an aurcassociativernerwork to store
/ the vectors x; = [1 1 1, 2 = [1 -1

—11-1} x3 = [—] ¥~1—1-1]. Find weighc
\\ matrix with no se)fconnection. Calculare the

tions:
4
Yimd = %3 + Z)_'f%?;
j=1
1
=1+[(1010)] !
0
-1
=1l+1=2

Applying activations we get 33> 0 =
73 =1 Therefore, y=[1 0 1 0] =
No convergence,

Step 6: Choosing unit Y5 for updating ics activa-

tions:
4
Y2 =x2 4+ ZJ’J’“{Q
Jj=I
1
_ 0
=0+[1 0 1 0] 1
-1
=042=2

Applying activations we get yp> 0 =
7 =1 Therefore, y=[1 1 1 0] =
Converges with vector x. __I

energy of the stéred parterns. Using discrere
Hopfield nepwark test pateerns if the test par-
s

=14[11 1 0] :
wern are given as x; = M1i1-11}, 02 =

il
o

0
1
1
-1 0=i~1—=1-1landxg=[11~1—1 ~1].
Coné-re the test patters energy with the stored

A i
Apply activations we get yiy>0 = AELNS ENECEY.

n=LNowy=[1 11 0.

Step 4 Choose unit Y for updation. /Si;'lution: The weights matrix for the three given

Yecrors is
4
T
Yimt = x4 + Z)’j"’j‘i W= ZJ,' & -‘j(.P)
j=1
1

1
:i } -1
=0+[1 110} | {=-3 =1 [08ii+] -t)0-1-11-0)
i i
0 1 -1
Applying activations we get yig<0 = -1
¥4 = 0. Therefore, y=1{1 1 1 0¢]. 1
Step 5: Choose unit Y3 for updation. 4+ =1 (=t ~1-1~1]
~1
i ~1
in3 = X3 + 2T
T j=]Jf[; 111 11 1 -1 -1 1 -1
1 11111 -1 1 ¥ -1 1
1 =111 11 1[+]|~-1 1 1 ~1 1
=0+f1 1 10] 0{=? I 1111 1 -1 -1 1 -1
-1 [T S -1 1 1 -1 1

Associativea Mamory Networks

136

1 -1 1 1
-1 1.-1 -1 -1
o T S T T |
1 -1 1 1 1
-t 1 1 1

311 31

-1 31 11

W=]1 13 13

3211 31

1 13 13

The weighe matrix with no self-connection is

0 -1 1 31

-1 01 -1
We=| 1 10 13
3 -11 01

Il 13 10

The energy function is defined as
E=~05[x W]

Therefore the encegy for the ith partern is given by
B = 0505 W]

Energy for first pattern

£l = —0505 W k)

==0501 1 1 1 1 1,5
0 -t 1 31 1
—1 01 -1 1 1
1 10 13 1
3 -11 01 |
! t3 1 x5 l Sx1
4
=-0501 1 11 1,46
4
6

5x|
=-05[4+0+6+4+0),,

= —0.5[20] = —10

Energy for second pattern

Ey = —0.5WTal)
==05[l =1 -1 1 ~1]

0 -11 31 1
-1 01 -11 -1
1 10 13 -1
3 -11 01 1
1 13 10 —1
2
—4
=-05[1 -1 -1 1 —1]| =2
2
-2

=—0524+4+2424+2=~05{12] =6
Energy for third pattern

B = -05[xWx]]
=-05(-1 1 -1 -1 -]

0 -1t 317[-1
-1 01 ~-11 1
1 10 13|~
3 -1t 01| 1
I 13 1of| -1
-6
0
==050~1 I -1 -1 ~1] | —4
-6
-4

=-05[64+0+4+6+4]=~-05[20] = ~10
Applying test patterns

For first test pavtern ¢} = [1 1 1 —1 1]

andy=1[1 11 —1 1l Choosing uni 4 for

updarion, we gec
4

Yind = 24+ Z]} g
i=i

=—1+{1 1 1 -1 1]

_ O — = G

4.10 Solved Problems

137

=~1+3-1+1~-0+1=3>0

Applying accivations, we get y4 = 1. Therefore,
£ =101 111 11 - convergence. The
energy function is given by

E| = 05 W)

On substituting the corresponding values, we get

T

El=-10

+ For second test patrern x4 = [1 =1 —1~1 —1]
and y =[1 -1 —1 —1 —1]. Choosing unit 4 for
updation, we get

4
Yind = %5+ Z_ijjq

f=1

3

1

=—1+01 -1 -1 -1 -1} 1
0

1

=-14+341-1-0~1=1>0

Applying activations, we get 34 = 1. Therefore;”

%4 =1 -1 1 —1] - convergence. The

energy function is given by

Ey = 050, N

for updation, we get
4

Yim =% + Zijjl
) j=t

=1+{ 1 -1 ~1 =1

—) b el (D

=141 -1 -3 —-1==-5<0

Applying activations, we get y = —L There-
fore, modified x; = (-1 1 -1 -1 -1]—
convergence, The energy function is given by

By=—0.5 W«]
-1
i
=-05[-11-1-1-1] W] -1
-1
-1

=-0.5[201=-10

Thus, the energy of the stored pattern is same as thar
of the test patcern.

15. Construct and test a BAM network 1o associate
lerters E and F with simple bipolar input-output
vectors. The target output for E is {(—1, 1} and
for Fis (1, 1). The display matrix size is 5 % 3.
The tnput patsers are

1 ok ok K

=-05{1 =4 ~1 1 =1 {WT} | -1 * e e

i * ok * e

1 x 8 o £ = 8

* kX * 0o

=-05112]=-6 gy wpr

Targert o t{=1,1 (1,1

* Forthird cestpatterng =[1 1 -1 —1 —1] ger ousput {))

andy={[1 1 ~1 -1 —1].Choosingunit| Solution: The inpucs are

Input pattern ~ Inputs Targets Weights

E 1113-1-11111-1-1111) [-1, 1] W

F nNi1i1111 1-1-11-1-1 i-1-1] (1 1] W,

138

Associative Memory Networks - g 4.10 Solved Problems 139
(i) X vectors as input: The weight marrix is obrained by E The total weight macrix is
!
—1 17 r1 17 fo 2
V=250 4 | -1 1-| 11 0 2
[1] [-1 1] SR N T 0 2
1 -1 1 [-1 1 11 0 2
1 -1 1 | I —i 1 1 2 Q0
1 -1 1 ‘ 1 -1 11 2 9
-1 1 -1 ! -1 1 1 1 0 2
~1 - | WeW, +Wy= -1 1|4|~1 —1|={-2 o0
i -1 1 | -1 1 -1 -1 -2 0
wi=| 11 =] -1 1 ! -1 1 11 0 2
1 -1 1 I -1 -1 -1 -2
| I 1 -1 |-1 =1 -2
- Lo -1 1 11
-1 1 -1 ~1 -2
- b -1 IJ -1 -1] L—z 0]
1 ~1 1 L L
1 -1 1 ! Tésting the network with test vectors “E” and “F.”
1 J -1 1 * For test parern £, compuring net inpuc we get
(0 2'|
1] 1 17 0 2
1 Lo el , 0 2
| - . 0 2
1 ol ;o 20
' -2 0
1 1 1 0 2
1 1 1
Pir=11111—=1~11111=1=1111) 5|2 @
1 1 1 2 0
Wy=| -1 1 j=}-1 1 0 2
-1 -1 =1 -
1 i 1 -2
-1 -1 -1 0 2
-1 -1 -1 -2
1 1 1 L—2 .
! - =[-12 18hi
L -1 i L_l _1_ . Applying activarions, we get y = [—1 1], hence correcr response is obtained.

P VN e e SIS Y NN

140

Associative Memory Networks
* For test pawtern E Computing net input, we et

F o 7]

0 2

0 2

0 2

2 0

2 0

0 2

Fr=[111111~-1-11 -1 -11-1~1]|-2 O
-2 0

o 2

0 =2

0 -2

0 2

-2 0

=[12 18] -2 0]

Applying activations over the net input, to caleulaee outpur, we gety = [1 1], hence correct response is
obrained.

(if) Y vectors as input: The weight matrix when Y vectors are used as input is obrained as the transpose of
the weight matrix when X vectors were presenced as inpur, j.e.,

wT = 0000220-2-20 0 00 -2 -2
2222002 0 02 -2 -22 0 0
Testing the network

(@) For cest partern E, now the inpuris [—1 1], Computing net input, we have

2
0 02 -2-22 0 0
-2 -222 72

| = - — —
,#y;n=x-WT‘.:[_“]_|:00002 0 -2 -20 0 00 -2 -2
— 22220 200
=(2222 -2 -222122
Applying the activation functions, we get

y=[1111—l-11111—1—111l]

which is the correct response.

(b) For test patrern F, now the input is [1, 1]. Computing nec input, we have

| 0000220-2-20 0 00 —2 —2
'Lr‘y'"x [][2222002002—2«-2200
—_

=[2222222—2—22—2—22-2—2}

141
4.10 Solvad Problems

Applying the activation functions, we get

y=(1 111111 -1~11-1-11=1~1]

which is the correct response, Thus, a BAM netv-.rork ‘ 1 —i _i —i
has been conserucred and tested in both, sh&dirthl?ns - + —1 = + o
fromXtoYand Yo X. '|'1 . : -
16. (a) Find the weight marrix in bipolar form 4 4
for the bidirectional associative memery using 4 4
outer products rule for the following binary w=|_, ,
input—output vector paits 5 o
=000 0, A= 0 . _
)= 001, #A)=(1 0 (b) The unit step function for binary with threshold
=0 100 £H=01D 0 is used.
- = l
=0 1190 {)=0 1 L if o> 0
(b} Using th@stc function {with threshold ForYlayer = 3= 13 if yiy=0
0) as the ourput units acrivation funcfiom; test | 0 if y,<0
“the response of the network on each of the inpuc s L xini;\
pawerns.) For X layer é o =% Fxe=0
{c) Test the response of the network on various - 0 iF %<0
combinations of input patterns with “mistakes .
or “missing” data. Presenting :—in%m#

i o -1 -1 Gr-1 0 0 -1k

i) [-110 — 1 G (11 ~1 =1} () [11] * 1} =1 0 0 0. Computing net inpur,

we have
Solution:
: ; 4 —4
{a) The weight mauix for sroring the four input Yy
vectors in bipolar form is ty =[1000] 2 2
i 2 -2
T
LADBACED 4 —4
p=l
1 ! Applying activations we get ;= [L 0] which
_ -1 =1+ —i -1 is the correcr response. .
- _1 + 2)={1 ¢ 0 1]. Compusing net input,
-1
-1 -1 4 —4
l 1 —4 4
+ |+ i1} | =000 5
-1 -1])
1 -1 1 -1 =6 —6]
-1 1 ~1 1 .
R -+ Applyingaciivations we get 4 = [1 0] which
-1 1 -1] is the correct response.

142

Associative Memory Networks

{3 =101 0 0l Computing the net
input, we have

4 —4
w=b1og| 73 1
2 =2

=[-4 4]

Applying activations we getg =[G 1]which
is the correct response,

vs{d) = [0 1 | 0]. Computing the net
inpur, we get

4 ~4
m=lorio | 73 4
2 -2

=16 6]

Applying activations we get 5 =[0 1}which
is the correct response,

Presensing t-input pastern

*f)={1 0]. Computing the net input, we

obrain
= 4 —4 -2 2
:...,—[10][_4 i 2 ﬁz]
=[4 —4 27

Applyingactivationswegets; = [1 0 0 1]
which is the correct response.

(@ =1[0 1. Computing the net input, we

obrain
4§ —4 2 2
ins == 10
= 1][_4 P _2]
=[-4 42 -9

Applying activationswegets; = [0 1 | 0]
which s the correct response.

On presenting the partern [1 0] we obuain
only [1 00 Nandnot {1 0 0]. Sim-
larly, on presenting the parcern [0 1] we
obeain only {0 1 1 0] and not [0 1 0 o).
This depends upon the missing data encries,

() Test response of nerwork

(i) Herex=[1 0 —1 — 1]. Calcularing
ner input, we get

_y,-,y-=x-W
4 —4
—4 4
(e 5
2 -2
=4 -4

Applying activations we get y=I[1 0}
which is the correct response.

{ii) Herex=[—1 ¢ 0 —1). Calcularing
the net input, we ger

4 —4
4 4

w=1=1 00 -
Yij =1 1) 2
2 -2

=[-6 6]

Applying activations we ger y=10 1
which is the correct response.
() Herex=1[-1 1 ¢ —1). Caleularing
the net inpur, we ger .,
L

4 —4
w=1-1 110 13| 4 4
Yo .
2 -2

= [—l 01 0] [
Applying activations we geey=1{0 1]
which is the correct response,
(iv) Herex=[1 | —1 —1]. Calculating
the net input, we ger

4 -4
-4 4

inj — l l _l e
Yoy =1 Iy 5,
2 =2

=[0 O

4.11 Review Questions

143

Applying the previous activation and
taking closely related partern activation
wegery; = [0 1).

geeyy=1[0 1]

) Y =[1 1). Computing che nec input, '
we get
4 -4 -2 2]
=[0 0 0 0}

-
Thus, in this casé since all the x;,; values
are zero, 1o apply the activation func-
tion it may take the previous x; values for
%, = 0. Hence the closely relared pat-
terfcan be taken to obtain the correct
response.

14.11 Review Questions

17. Find the hamming distance and average
hamming distance for the two given inpuc
veciors below.

Xi=0i-1-1-11-1-1-11-1~1]
Xz=[-111-11-11-11-1~11]
Solution: The hamming distance is number of

differenc bits in two binary or bipolar vectors.
Here

HX.X;1=8
@m’m

{“n” is.the-n, of components in given vector.)

1. What is content addressable memory?

2. Specify the functional difference berween a RAM
and a CAM,

3. Indicate the two main gypes of associative mem-
ory.
4. Stace the advantages of associarive memory.

5. Discuss the limitations of associative memory
network.

6. Explain the Hebb rule training aigorithm used
in pattern associarion.

7. Sware the outer products rule used for trining
pactern association nerworks.

8. Draw the architecture of an autoassociative net-
work.

9. Explain the testing algorithm adopted ro test an
auroassociative network.

10. What is a heteroassociarive memory newwork?
11. With 2 neat architecture, explain the training
algorithm of a heteroassociative nerwork.

12. What is a bidirectional associative memory net-
work?

13.

14,
15.
16.

17.
18.

19.
20,
21,
22,

—

23.
24,

25.

Is it true chat inpur patterns may be applied at
the outpucs of a BAM?

List the activation functions used in BAM ner.
Whar are the owo types of BAM?

How are the weights derermined in a discrete

BAM?
State the testing algorithm of a discreee BAM.

What is che activation funcrion used in contin-

uous BAM?

Define hamming distance and storage capaciry.

What is an energy funceion of a discrete BAM?

What is a Hopficld ne?

Compare and contrast BAM and Hopfield net-
works,

Mention the applications of Hopfield nerwork.
What is the necessity of weighes with no self
connection?

Why are symmetrical weights and weighes
with no self-connection imporranc in discrete

Hopfield nee?

144

Associalive Memery Networks

26. What is a recurrent neural neework?
27. What are the two types of Hopfield nec?

28. Draw the architecrure of discrete Hopfield
net.

29. State the testing algorithm used in discrete

32

33.

34.

Discuss in dewil on continuous Hopfield net-
work.

Make an analysis of energy funciion of 2 contin-
uous Hopfield nework.

Whar are iterative autoassociative memory nets?

Hopfield nerwork. 35. Explain in detail on linear auroassociative mem-
30, Whar is the energy function of a discrete ory. State the conditions of linearicy.
Hopfield network? 36. Write short note on brain-in-the box model.
31. Mention the .Formula Iu.sed for determining.the 37. What is the functional equivalent of a temporal
storage capacity of a discrete Hopfield ner. associative memory nerwork?
l4.12 Exercise Problems
1. Train a hereroassociative memory network using bipolar form, The binary vector pairs are:

Hebb rule to store input row vector ¢ =

(51 52 53 54) to the output row vector £= (4 #). A)={1 0}, Hi)y=(1)

The vector pairs are given as below: (2y=0 1, H£)=01 0.
M=0 0010 A= 0 A!.so_tcSt the performance of the network with
=0 111, d=0 0 missing and mistaken data.

By=(1 100, [B=01 5. Construct 2 heteroassociative network for che
)= 011, dd=0 1) parern given below:
2. Construct and test a heteroassociative memory ¥ %k LI
network using outer products rule to store the ¢ % * e
given input—target vector pairs: * ok # L
“I” l(Cl’
=0 01, H£)=(0) apn
D=0 11, D=0 1) The rarger of “I” and “C” are (1,—1) and
(-1, 1) respectively. Store the partern and as well
3. Constrtter and test a heteroassociative memory recognize the partern.
net to store the given vector pairs: 6

A= 00 1, =@ v
A2)=0 01 1), #)=(0 1
3N=0 100, HB=0 0
=0 1t 00, A= 0

Also test the network with “noisy” inpur parterns
included.

4. Construct and train a heteroassociative nerwork
to store the following input—outpur vecror pair.
The waining inpur—target outpuc vector pairs
are in binary form. Obmin the weight vectoc in

. Train an auroassociative network for input vec-

vor [~1 1 1 — 1] and also test the network with
sam¢ input vecror. Test the auroassociative net-
wark with one missing, one mistake, two missing
and two mistake entries in rest vector.

. Check the auroassociarive nerwork for inpuc vec-

tor [—1 ~ I 1]. Form the weight vector with no
self-connection. Test whether the net is able to
recognize with one missing and two missing data.
Comment on neework performance.

. Use outer products rule to store vectors

[-1-1 ~1 1} and [1 1 1 —1] in an auto-
associarive nerwork.

4.12 Exercise Problems

145

10.

11,

12,

13.

14.

+ Find the weight without serting diagonal
terms o Zero.

+ Test vector using [—1 — 1 — 1 — 1] as inpu.
* Test network using [1 1 1 1] as input.

o Test the net using [0 1 1 0] as inpuc.

* Repeat {a)-(d) with diagonal elements set to

2er0.

. Find the weight macrix required to store the vec-

wrs[11-11-1},{1111-1],[-1 1111}
and [1 1 -1 —1 1) in wy, w2, w3, w4, Tespec-
tively. Caleulate the toral weight matrix to store
all the vectors and check whether it is capable
of recognizing the same vectors presented. Per-
form the association for weight marrix with no
self-connection.

Construct an auroassociative nerwork to store
vector [1 1 —1 +1]. Use irerative autoassocia-
tive necwork co test the vector with three missing
elements.

Construct and test an associative discrete Hop-
field network with inpur vector [1 —1 1 1). Test
the nerwork with missing encries in firsc and
fourth components of the stored vecror.

Construct an aurcassociative nerwork o sgore
the vectors xp = [T 1111 -1}, 0 =
f=1-1-t1ilJxz=[111-1-1 —1). Find
weight marrix with no self-connection. Calculate
the energy of the stored patterns.

Consider a two node continuous Hopfield net-
wark. Assume the conductance is gry = g2 = 3
mho. The gain parameter is A= 1.2 and the
exsernal inpurs are zero. Calculate the accurate
energy value of the state y = [0.1 0.1)f

Design a linear heteroassociate nerwork thac
associates the following pairs of vectors.

a=[L3-51Ln=[0 0 0
n=0220-4" p=0 0 17
0 =[1,0,-3,41T, ;5=10 1 1N

Verify that vecrors xi, ¥ and x3 are lincarly
independem. Compute weight matrix of linear
associates.

15.

16.

17.

19,

Consider a discrere Hopfield network with a
synchronous update.

+ Show that if all given pattern vectors are
orthogonal, then cvery original pattern is an
global minimum.

« Show that in general other global minima
exist.

Construct and test a BAM nerwork to asso-
ciare letters T and O with simple bipolar
input—output vectors. The target ourput for T
is (1, —1) and for O is {1, 1). The display marrix
size is 4 x 3. The inpu patterns are

¥ ok * ¥ * ¥
o ¥ @ * . *
[} *] *] *
[} *] ¥ * *
llTIl I(OH

Find the weight maurix in bipolar form for the
BAM using outer products rule for the following
binary input—outpu vector paiss.

A =01 00 0} AD=0 1
(2 =0 110, =01 0

Using the unit step function a5 che output unir’s
activation funcrion, test the response of the net-
work on each of the input patterns. Also test the
response of the nerwork on various combinadions
of inpuc pattern with “mistakes” or “missing’
dara.

. Find the hamming distance and average ham-

ming distance for the two given input vectors
below:

X=[11-1-111-1-1—-1-1
11 -1

Y=[1-111~11-1-111
—-11-1)

Prove the stability of the continuous BAM using
{a) Kohonen Grossberg theorem and
(b} the Lyapunov theorem.

146

Associativa Memory Networks

20. Design a BAM-based remporal associative mem-
ory with 2 threshold activation function to recall
the following sequence:
s={LTT—111,[1111—F—1-1],

[11111-1—-1))

4.13 Projects

Compute the weight marix W and check the
recall of parterns in forward and backward direc-
tions.

1. Wirite 2 computer program to implement a her-
eroassociative memory nerwork using Hebb rule
to set the weights. Develop the input patterns and
rarget outpuc of your own,

2, Write a program to construct and test an auroas-
sociative necwork to store numerical values from
0-9. Also creare the parterns for 0~9 usinga 5 x 3
array matrix. Add “noise” 1o the inpur signals and
test the network.

3. White a “C” program to implement a discrete
Hopfield net to store cthe lewers A-E. Form che
input paterns for the lecters in a 4 x 3 array
matrix.

4. Write 2 computer program to implement 4 bipo-
far BAM. Allow 15 units in X layer and 3
units in Y layer use the program to store the
following patcerns (the X fayer vectors are the
lerters given in the 5 % 3 arrays and the asso-
ciared Y layer vectors are given below in each

x pattern):

"A” “B” ‘!CH
LI * ko ' ok ox
* ¥ * 0k ke »
*x k¥ * % v
* v ¥ * 4 % £ oy e
* 0ok * % L
LLY (~,-,1 1,-,D
l(Dll ‘(El’ “F”
L L I L
E L x * * o ®
L * ok k * %
* v % x * = *x = e
X ke B ok ok ¥ o

-LLD (1= (-1,=1 =1

Is it possible w store all six paccerns at once? If
not, how many can be scored ar the same dme?
Petform some experiments with noisy data,

r v
T

Unsupervised Learning Networks

— Learning Ohjectives

Definition of unsupervised nerworks. nerwork, adaptive resonance theory and

* Gives details on fixed weight competitive nets Q.

like Maxnet, Mexican hat and Hamming nex. * Enhance the features and star ropology of
» Discusses the neighborhood rtopelogy of CPN nerwork.

Kohonen self-organizing fearure maps. *» Details the variants of LVQ (LVQ2, LVQ3)
. : and ART (ART 1 and ART 2).

Provides architecture, training algorithm,
flowchart depicting training process and
testing algorithm of different unsupervised
nerworks like KSOFM, touncerpropagation

* Variery of solved problems using unsupervised
learning necwork.

le Introduction

In chis chapter, the study is made on the second major learning paradigm-unsupervised learning. In this

learning, there exiscs no feedback from the system (environment) ro indicate the desired ourputs of network.

The network by itslf should discover any relationships of interest, such as features, patterns, conrours,

correlations or categories, classificarions in the inpur data, and thereby translate the discovered relationships

into outputs. Such nerworks are also called self-organizing nerworks. An unsupervised learning can judge

how similar a rew input patern is to typical patterns already seen, and the nerwork gradually learns what

similarity is; che nerwork may construce a sec of axes along which to measure similarity to previous parterns,

i.¢., it performs principal component analysis, clustering, adaptive vector quantization and feature mapping.

For example, when net has been trained to classify the inpur patrerns inco any one of the output classes, say,

L., R,SorT, cthe net may respond to both the classes, P and QQ or Rand . In the case mentioned, only one
of several neurons should fire, i.e., respond, Hence the network has an added strucrure by means of which the
net is forced ro make a decision, so that only one unit will respond. The pracess for achieving ¢his is called
competition. Practically, considering a set of students, if we want to classify them on theé basis of evaluarian
performance, their score may be calculated, and the one whose score is higher than the others should be the
winner. The same principle adopred here is followed in the neural necworks for pattern classification. In chis
case, there may exist a tie; a suitable solution is presented even when a tie occurs. Hence these nets may also
be called competitive nets. The extreme form of these competitive nets is called winner-take-ali. The name
irself implies that only one neuron in the compering group will possess a nonzero ourput signal at the end of
competition.

148 Unsupervised Leaming Networks

There exist several neural networks that come under this category. To list out a few: Maxnet, Mexican har,
Hamming net, Kohonen self-organizing feature map, counterpropagation net, learning vector quantization
(LVQ) and adaprtive resonance theory {ART). These networks are dealt in detail in forchcoming sections. In
the case of unsupervised learning, the net seeks to find patterns or regularity in the input data by forming
clusters. ART necworks are called clustering nets. In these cypes of clustering nets, there are as many inpuc
units as an input vector possessing components. Since each output unit represents a cluseer, the number of
ourput units will limit the number of clusters that can be formed.

The learning algorithm used in most of these nets is known as Kohonen learning, In this learning, che
units update their weights by forming a new weight vector, which is a linear combination of the old weight
vector and the new input vector. Also, the learning continues for the unit whose weight vector is closest

to the input vector. The weight updation formula used in Kohonen learning for ourpuc cluster unit f is
given as

wi(new) = wo;(oldH-a [x - w(-)j(old)]

where x is the inpuc vector; wey the weight vecror for unit j; o the learning rate whose value decreases
monotonically as training continues. There exist two methods to derermine the winner of the nerwork during
competition. One of the methods for determining the winner uses the square of the Euclidean distance
berween the inpuc vector and weight vector, and the unit whose weight vector is at the smallest Euclidean
distance from the inpurt vector is chosen as the winner. The next method uses the dot product of the input
vector and weight vector, The dot product berween the input vecror and weight vector is nothing bur the nex
inputs calculated for cthe corresponding cluster unics, The unic wich the largesc dot product is chosen as the
winner and the weight updarion is performed over it because the one with largest dot product corresponds to
the smallest angle between the inpur and weight vectors, if both are of unit length. Both the methods can be
applied for vectors of unir length. But generally, to avoid normalization of the inpur and weight vectors, the
square of the Euclidean distance may be used.

l 5.2 Fixed Weight Competitive Nets

These competitive nets are those where the weights remain fixed, even during training process. The idea of
competition is used among neurons for enhancement of contrast in their activation funcrions. In this section,
three nets — Maxner, Mexican har and Hamming ner — are discussed in detail.

l 5.21 Maxnet

In 1987, Lippmann developed the Maxner which is an example for a neural net based on comperition. The
Maxner serves as a subner for picking the node whose inpuc is larger. All the nodes present in this subnet
are fully interconnected and thete exist symmerrical weights in all these weighted interconnections. As such,
there is no specific algorithm to train Maxner; the weights are fixed in this case.

5.2.1.1 Architecture of Maxnet

The architecture of Maxnet is shown in Figure 5-1, where fixed symmerrical weights are present over the
weighted interconnections. The weights berween the neurons are inhibitory and fixed. The Maxnet wich this
structure can be used as a subnet o select a particular node whase net input s the largest.

5.2 Fixed Weight Competitive Nets 149

®
)

-£ -

&

1 1

Figure 5-1 Maxnet structure.

5.2.1.2 Testing/Application Algorithm of Maxnet
The Maxnet uses the following activation function:

x if x>0
f(x)=l[o if x<0

The resting algorithm is as follows:

I Step O: Initial weights and inirial acrivations are set. The weight Is set as [0 < & < 1/m], where “m” is
the total number of nodes. Ler

x%;(0) = input o che node Xj
and

g if Q]

Step }: Perform Steps 2—4, when stopping condicion is false.

’”ij=l_l if i=j

Step 2: Update the acrivations of each node. Forj =1 o m,
xinew) = f|:x_r-(old)—£ Zx,(.(old)]
i
Step 3: Save che activacions obtained for use in the next iteration. Forj = 1 to m,
xj(old) = x;(new)

Step 4: Finally, test the stopping condition for convergence of the nerwork. The following is the scopping
| condition: If more than one node has a nonzero activation, continue; else swop. J

In this algorichm, the input given to the function £() is simply the toral inpur to node X; from all others,
including its own inpur,

150 . Unsupervised Leaming Networks 5.2 Fived Weight Compefitiva Nets 151

l 5.9.2 Mexican Hat Net

Initialize radius of region of
Start interconnection {A,), radius of + Va
reinforcement (A,), total no. of iterations &,

In 1989, Kohonen developed the Mexican har nerwork which is a more generalized contrast enhancement
network compared to the earhier Maxnet. There exisr several “cooperative neighbors” (neurons in close prox-
imity) to which every other neuron is connected by excitatory links. Also each neuron is connected over
inhibitory weights to a number of “competitive neighbors” (neurons present farther away). There are several
other farther neurons to which the connections between the neurons are not established. Here, in addition to
the connections within a particular layer of neural net, the neurons also receive some other external signals.
This interconnection pattern is repeated for several other neurons in the layer.

Set initial weights
w,=¢p; k=0to A, {c>0)
w,= &, k= A+l to A, {c,<0)

5.2.2.1 Architecture “| set X,, vector of aclivations,

The architecture of Mexican hat is shown in Figure 5-2, with the interconnection partern for node X;. The 21 previous ime step 1o zer0
neurons here are arranged in linear order; having positive connecrions between X; and near neighboring units,
and negative connections berween X; and farther away neighboring units. The positive connection region is
called region of cooperation and the negative connection region is called region of competition. The size of External signal s is inputed
these regions depends on the relative magnitudes existing berween the positive and negative weights and also x=sgand X=X

on the topology of regions such as linear, rectangular, hexagonal grids, erc. 1In Mexican Hag, there exist two
symmettic regions around each individual neuron.

The individual neuron in Figure 5-2 is denoted by X;. This neuron is surrounded by other neurons X1, Iteration count
X_1, Xirz, Xi=2, ... - The nearest neighbors to the individual neuron X; are X;4.1, Xi—1, Xit2, and Xi-2. f=1
Hence, the weights associated with these are considered to be posirive and are denoted by wi and wj. The
farchest neighbors ro the individual neuron X, are taken as X;43 and Xi_3, che weighus associated with these
are negarive and are denoted by wj. It can be seen that Xi4 and X;_4 are not connecred to the individual No
neuron X;, and therefore no weighted interconnections exist between these connections. To make it easier, 1< Ly
the units present within a radius of 2 [query for unit} to the unit X; are connected with positive weights, the
wnits within radius 3 are connected with negative weighes and che units present farther away from radius 3
are not connected in any manner o the neuron X;.

Yes

Compule net input, feri=1ton
A, -R- R,
=0 Z Xpint G2 Z: Xo.. ¥ 2 Zxﬁilk
5.2.2.2 Flowchart P} xR, Pyt

The fowcharr for Mexican hat is shown in Figare 5-3. This clearly depicts the flow of the pracess performed
in Mexican har necwork.

Apply activation functions
X, = Min{X,,,, max(0, x)] i=110n

W. W
3 WD K]

W, n W,

W, /% Slore current activations
SECNOROED
t=t+1
{ Stop)

Figure 5-3 Flowchare of Mexican hat.

S

Figure 5-2 Structure of Mexican har.

iy

152 Unsupervised Learning Networks

5.2.2.3 Algorithm

The vasious paramerers used in the eraining algorichm are as shown below.

R» = radius of regions of interconnections
Xi14 and X,y are connected to the individual units X; for £ =1 to Rz.
Ry = radius of region with positive reinforcement (Ry < R)
W, = weight berween X; and the units X and X;_;
0K k<R, w=positve
By < k<R, wp= negatve
s = external input signal
£ = vector of activation
xg = vecror of activations at previous time step

tmay = total number of iterations of contrast enhancement.

Here the iteration is started only with the incoming of the external signal presented to the network.

Step 0: The parameters Ry, Ry, tmay ate initialized accordingly. Initialize weights as

we=c fork=0,...8 (where ¢; > 0)
wp=g frk=R+1....,R (wherecz < 0)

Initialize xg = 0.
Step L: Inpur the external signal s:
xr=cs
The activations occurring are saved in array xo. For =1 o n,
Xi = %

Once activations are stored, set iteration counter £ = 1.
Step 22 When /s less than tmax, perform Steps 3-7.

Step 3: Calculace net input. For7i =1l w n,

'y —Ri-1 R
X=a Z Xy T 02 Z X4 F 02 Z X0,k
k=—Ry b=—Ry pe= By 41

Step 4: Apply the activation function. For i =} o »,

x; = min[xmay, max(0, 1)}

Step 5: Save the current activations in xp, i.e., for =1 w0 n,

xpi = Xi

6.9 Fixed Weight Competitive Nets 153

Step 6: Increment the iteration counter:
r=t+1

Step 7: Test for stopping condirion. The following is the stopping condition:
If £ < £y, then continue S

Else stop 2 _J

The positive reinforcement here has the capacity to increase the activation of units with larger initial
activacions and the negative reinforcement has the capacicy o reduce the acrivation of units with smaller

wn

nitial activations. The activation function used here for unit X;ata particular time instant 7

xit) = f[s,'(r) + Z wekiph + k- 1)]
£

The terms present within the summation symbol are the weighted signals that arrived from other units at the
previous time step.

I 5.2.3 Hamming Network

The Hamming nerwork selects stored classes, which are ar a maximum Hamming distance (FI) from the
noisy vector presented at the input {Lippmann, 1987). The vectors involved in this case are all binary and
bipolar. Hamming nerwork is a maximum likelihood classifier thar determines which of several exemplar
vectors (che weight vecror for an cutput unit in a cluscering net is exemplar vector or code book vector for the
pattern of inpurs, which the net has placed on that cluster unit) is most similar to an inpur vector {represented
as an a-tuple). The weights of the ner are determined by the exemplar vecrors. The difference berween the
toral number of components and the Hamming distance berween the vecrors gives the measure of similaricy
berween the input vector and stored exemplar vectozs. It is already discussed in Chapter 4 that the Hanming
distance berween the two vectors is the number of components in which the vectors differ.
Consider two bipolar vecrors x and y; we use a relation

is given by

xy=a—d
where z is the number of components in which the vectors agrec, d the number of components in which the
vecrors disagree. The value “e — & is the Hamming distance existing between two vectors. Since, the total
number of components is #, we have,
n=a+d
ie, d=n—a
On simplification, we get
x y=a—d
x y=a—{n—a)
xy=2a—n
a=x-y+n

a= e+ 50

154

Unsupervised Leaming Networks

From the above equation, it is clearly understood thar the weights can be set to one-half the exemplar vector
and bias can be set initially to #/2. By calculating the unic wich the largest net inpue, the net is able to locate a

particular unit that is closest to the exemplar. The unit with the largest net input is obtained by the Hamming
net using Maxnec as its subnet.

5.2.3.1 Architecture

The architecture of Hamming neework is shown in Figure 5-4. The Hamming network consists of two layers.
The first layer compures the difference between the toral number of components and Hamming distance
between the input vector x and the stored partern of vectors in the feed-forward path. The efficient response
in this layer of a neuron is the indication of the minimum Hamming distance value berween the inpucrand the
category, which this neuron represents. The secand layer of the Hamming nerwark is composed of Maxnet
{used as a subner) or a winner-take-all network which is a recurrent nerwork, The Maxnet is found to suppress
the values ac Maxner ourpur nodes except the initially maximum output node of the firs layer.

The funcrion of Maxnetis to enhance the initial dominart response of the node and suppress others. Since
Maxner possesses recurrent processing, the jth node is found to respond positively while the response of all

the remaining nodes decays to zero. This result needs a positive self-feedback connection with itself and a
negative lateral inhibirion connection.

5.2.3.2 Testing Algorithm

The given bipolar inpur vector is x and for a given set of “m” bipolar exemplar vecrors say «(1),...,

e(7), ..., e(m), the Hamming network is used ro decermine the exemplar vecror that is closest to the input
L&]
—{ A
ni2
o
W o1 AT g b
E. b
}"2“0 -£
)
y"r 1 yzmn
. =3
. {#) .
w14,
E M[krl]

W, |’ ym(m)

5.3 Kohanen Self-Organizing Feature Maps

155

vector x. The net input entering unit Y; gives the measure of the similarity berween the input vector and

exemplar vector. The parameters used here are che following;

= number of input units (number of components of inpus—output vector)
m = number of oueput unics (number of components of exemplar vector}

¢(7) = jth exemplar vector, i.e., ‘
:(]) = [fl(j):-- -Jfl'(j):- --:fn(j)]

The testing algorithm for the Hamming Net is as follows:

Gep 0: Inicialize the weights. Fori= lwonandj=lwm

eilf)
wyj=——

2

Initialize the bias for storing the “" exemplar vectors. Forj= 1o m,

Step 1: Perform Steps 24 for each input vector x.

Step 2: Calculare the net input to each unit Y}, 1.e.,
il
Yo = b+ Zx;w,_‘,', j=lwm
=1
Step 3: Initialize the activations for Maxnet, i.c.,

_yj(O) =i J=110m

Step 4: Maxnet is found to iterate for finding the exemplar that best marches the input patterns.

N

The Hamming nerwork is found to recrieve only the closest c-las:s index and not the enrir_e vecror. Hinccne[;
the Hamming nerwork is 2 classifier, racher than being an associarive memory. The Hammmﬁ netl:vor_
be modified to be an assaciative memory by just adding an extra layer over [h(_: Maxne, such : ac the winril:;
unit, y;(k + 1), present in the Maxnet may trigger a corresponding stored weight vector. Such an associat

memory network can b called 2 Hamming memory network.

l 5.3 Kohonen Self-Organizing Feature Maps

5.3.1 Theory

Feature mapping is a pracess which converss the pat of arbicrary dimensionaliry ingo a respo

q or rwo-dimensional arrays of neurons, i.¢., it converts 4 wide pattern spage-nto 2 ?.p_mﬂifgggégiicilahe
e e @N necvork performing such a mapping is called feature map. Apare from its capability to reduce the higher

i i i i.e., it has to obtain a
Figure 5-4 Structure of Hamming nerwork. dimensionaligy, it has to preserve the neighborhood relations of the mp1-1t patterns, 1.e., it has

156 Unsupervised Leaming Networks

X

Flgure 5-5 One-dimensional feaure mapping network.

topology preserving map. For obtaining such feature maps, it is required 2

which consists of neurons arranged in a ooe-dimensional array or a two-dimensional array. To depict this, a
typical riecwork structure where each component of the inpur vector x is connected to each of the nodes is
shown in Figurs 5-5.

On che other hand, if the inpue vector is two-dimensional, the inputs, say x{g, £), can atrange themselves
in a two-dimensional array defining the input space (a, 8) 2s in Figure 5-6. Here, the two layers are fully
connected.

The topcll_c_)_g_i_calgr_eserving property is obsgrved in the brain, but not found in any other artificial neural
nerwork. Here, there are 22 ourpur cluster units arranged in a one- or two-dimensional array and the input
signals are n-tuples. The cluster (output) units' weight vector serves as an exemplar of the inpur pastern
Lhﬁj;zss_ad_;jwzw&_t’}_)gr_chx_sgn At che rime of self-organization, the weﬁﬁméﬁ%m
which matches the inpur pattern very closely is chosen as the winner unit, The closeness of weight vector
of cluster unit to the inpur patrern may be based on the square of the minimum _Euclidean distance. The
weights are updared for the winning unic and its neighboring units. 1t should be noted thae the weight
vectors of the neighboring units arc not dlose ta the input pattern and che connective weights do not multiply

the signal sent from che inpur units to the cluster units until dot product measure of similarity is being
used.

I 5.3.2 Architecture

Consider a linear array of cluster unis as in Figure 5-7. The neighborhoods of the units designated by “o” of
radii Ni(ky), Ni{ko) and Nilks), b1 > by > ko, where by = 2,83 = 1,3 = 0.

For a recrangular grid, a neighborhood (N;) of radii 4|, #; and #3 is shown in Figure 5-8 and for a
hexagonal grid the neighborhood is shown in Figure 5-9. In all the three cases (Figures 5-7~5-9), the unit with

5.3 Kohonen Self-Organizing Feature Maps

157

Figure 5-6 Two-dimensional feature mapping network.

o o o (o) 0) o} o
T 4
Niks)
|
Ni(kz)
|
N{k)

L

Figure 5-7 ‘CLmﬂ:.armuﬂclugw

grids, fel >k >--E§:-‘i;'}1ergk:m= 2,k =1k=0

—

“#" symbol is the winning un{t and the other units-are iridicated by “0.” Tn both rectangular and hexagonal

, in
For rectangular grid, each unit has eight nearest neighbors but chere are only six neighbors for each unit

the case of 2 hexagonal grid, Missing neighborhoods may just be ignored. A typical architecture of Kohonen

self-organizing feature map (KSOFM) is shown in Figure 5-10.

158

Unsupervised Learning Networks 5.3 Kphonen Self-Qrganizing Feature Maps 159

c o O o0 0 o C :
©loo o oof® l Initialize the weights,
D D g o o B N \
oo OIEIO o| o ! 0 -
olole o olo|e Nkl ‘ Inifialize topological neighborhood
o |20 ¢ o0 e r—Nfik) !
0 000O0CO0 O . ‘}
|

Calculate square of Euclidean distance
n
DU) =2 b~ W

1

for D{J) = Minimum

Calculate weights of winning unit
w;{new) = wlold) + a[x-wlold)]

1
r
1
1
1
1
1
1
i
. Qbtain winning unit index J
1
1
i
1
)
1
1
)
1
1
1
]

]
]
]
]
]
i
1
1
1
1
1
]
T
]
]
1
|
)
S

Reduce learning rate ¢
alt+1) = 0.5 «lf)

| |
\

N Reduce radius of topological N.'\ﬂ

I 5.3.3 Flowchart

The flowcharc for KSOFM is shown in Figure 5-11, which indicates the flow of training process. The process
is continued for particular number of epochs or till the learning race reduces to a very small rate.

The architecture consists of two layers: input layer and outpur layer (cluster). There are “»™ unirs in the
input layer and “m” units in the output layer. Basically, here the winner unit is identified by using either dot
product or Euclidean distance method and the weight updation using Kohonen learning rules is performed
over the winning cluster unir.

Figure 5-11 Flowchart for training process of KSOFM.

160 Unsuparviaed Leaming Networks

I 5.3.4 Training Algorithm

The steps involved in the craining algorithm are 2s shown below.

Etep 0: + Initialize the weights w;: Random values may be assumed. They can be chosen as the same I
fn-ge—of' values as the f the input vecto If information related to distribution
clusters 1s known, the inttal weights.can T to reflect that prior knowledge.

* Set opological neighborhood parameters: As clustering progresses, the radius of the neighbot-
hood Hecreas

* Initialize the learning rate or: It should be a slowly decreasing function of time.
Step 1: Perform Steps 2-8 when stopping condition is false.
Step 2; Perform Steps 3-5 for each input vector x.
Step 3: Compure the square of the Euclidean distance, ie., for each j = 1 1o m,

n m

DY =) (- wy)?
1

=1 j=

Step 4: Find the winning unir index], so that D{]) is minimum. (In Steps 3 and 4, dot product method
can also be used to find the winner, which is basically the calculation of net input, and the winner
will be the one with the largese dot product.)

Step 5: For all units j within a specific neighborhood of J and for all , calculate the new weights:

e s —
x;

|wjlnew) = w; L'_l_dl;i‘.ﬂ.f_.x:-!‘e'ij(@

or wif{new) = (1—a Jewylold) o x;
Step 6: Update the learning rate o using the formula & (¢ + 1) == 0.5 ().
Step 7: Reduce radius of topological neighborhood ar specified time intervals,
I_Step 8: Test for stopping condition of the network. J

Thus using this training algorithm, an efficient training can be performed for an unsupervised learning
nerwork.

l5.3.5 Kohonen Self-Organizing Motor Map

The exeension of Kohonen feacure map for a mulsilayer network involves the addition of an essaciation layer”

to the outpur of > izi ture map layer. The output fiode is found ro associ i s

values with certain inpur vegrors. This type of architecture is called as Kohonen seiforganizing motor map
(KSOMM; Tatter, 1992) and layer thar is added is called a motor map in which the movement command:

are being mapped into two-dimensiconal locations of excitation. The architecture of KSOMM is shown in

Figure 5-12. Here, the fearure map is memtia%mﬁitive network which classifies the

inpur vectors. The feature map is trained as discussed in Section 5.3.3. The Totor fap formatton is based

on the learning of a control task. The motor map learning may be either supervised or unsypervisetHearming ™ 1| .
and can be performed by delta learning rule or outstar learning rule (to be discussed later). The motor map ’p,r- \\J’

learning is an extension of Kohonen's original learning algorithm. a-\-f’b oo 2 W
I KRLIRS
&

5.4 Leaming Vector Quantization 161

Mator map

Actions
performed

Featura map

Partially connected
{unsupervised or
supearvised learning}

X Fully connected - unsupervised learning
Figure 5-12 Architecture of Kohonen self.organizing motor map. P ol : re =
\ l.'/c([
o 3
< - - e o
I 5.4 Learning Vector Quantization o N

Ii4.1 Theory

Learning vecror quantizagion (LVQ) is a process of classifying the patterns, wherein each outpuc unir represents
a particular class. Here, for each class several units should be used. The ourpur unit weight vector i called the
reference vector or code book vector for the class which the unit represenes. This 1s a special case of competinve
ner, which uses supervised learning methodolopy. DUfing traliing, tie autput units are found o be positioned
to approximare the decision surfaces of the existing Bayesian classificr. Here, the ser of training patterns with
known classifications is given to the network, alafig with an initial distribucion of the reference vectors. When
the training process is complete, an LVQ net is found to classify an inpuc vector by assigning it to the same

class as that of the ourpur unir, which has ifs weight vector very close_ 1o the input vector Thus IVQ s a.
cmm ties between categories to minimize existing misclassification. LVQ
is used for optical characrer mmgnition,mmmeWs as well.
LVQ ner may resemble KSOFM net. Unlike LVQ, KSOFM output nodes do not correspond to the known
classes but rather correspond to unknown clusters that the KSOFM finds in the data autonomously.

S rea
A R

't 6

’ y AN s
e ' i
N N

TR

l5.4.2 Architecture

-~
Figure 5-13 shows the architecrure of LVQ, which is almost the same as thag of KSOFM, with the difference
being that in the case of LVQ/the topological structure at cthe putput unic is not being considéredl. Here, each
ourpur unir has knowledge abour what a kncwrt TESENTs.
From Figure 5-13 it can be noticed that there exists input layer with “n” unics and ourpUt layer with “m”
units. The layers are found ro be fully interconnected with weighted linkage acting over the links.

162 Unsuperised Learning Networks 5.4 Learning Vector Quantization 163

(Start }

Initialize weight vectors’
and learning rala ¢

No
v
.\\\
. 3
Figure 5-13 Archirecture of LVQ. Ay
Calculate winner unit J, k- \
when D(j} is minimum
I 5.4.3 Flowchan)ls S
ini ; : Input T ,
The parameters used for the training process of a LVQ) include the following: rarget - -
I
x = wraining vector (¥, ..., x5 ..., %) '
- No
T = category or class for the sraining vecror
w; = weight vector for jch output unic (1js- st oo w,,j)
¢; =cluster or class or category associated with jth ourput unit,
The Euclidean distance of jth output unit is D{j) = 3" {; — w,-j)z. The flowchart indicating che flow of
training process is shown in Figure 5-14, Update weights using Updale weights using
w (new) = w,(nld} + afx-wjfold)] w'(new) = wiold) - alx—wlold)]
l 5.4.4 Training Algorithm]
In case of training, a ser of training input vectors with a known classification is provided with some inirial
distriburion of reference vector. Here, each output uni will have a known class. The objective of the algerithm Reduce learning rate
15 t0 find che oucput unic that is closest to the inpur vecror. . a{f+1) =05 alt)
I Step 0: Initialize the reference vectors. This can be done using the following steps.
|
|
* From the given ser of training vectors, take the first “m” (number of clusters) training vectors and !
use them as weight XEQIQrs, che remaining vectors can be used for training, ; No rreduces
+ Assign che inital wejghes and classificarions randomly. [10a ne‘gl;glble
‘ valu
» K-means chistering mechod.
Ser inidial learning rate ct. Yos
Step 1: Perform Steps 26 if che stopping condition is false. ‘ :
Stop

Step 2: Peiform Steps 34 for each training input vector . !

: Figure 5-14 Flowchart for LVQ.

T

164 Ungupervised Leaming Networks

Step 3: Calculate the Euclidean distance; fori= lwon,j= 1l tom,

D(5} = ZZ(X;' — wy)?

=l =1
Find the winning unit index J, when D{J} is minimum.
Step 4: Update the weights on the winning unit, wy using the following conditions.
I€ T = ¢,then wy{new) = wy(old}4- & [x — wylold)]
If T # g,then wj(new) = wy(old)— o [x — wy{old}]
Step 5: Reduce the learning rate a.

Step 6: Test for the stopping condition of the training process. (The stopping conditions may be fxed
| number of epochs or if learning race has reduced to a negligible value.)

I 5.4.5 Vanants

There exists several variants of LVQ net proposed by Kohonen. These include 1¥Q2,LVQ2.1 and IVQ3. In
the LVQ algarithm, only the reference vector that is closest to the input vecror is updated. The movement
it moves is based on whether or not the winning vector helongs to the same class as the input vecror. In the
developed versions of LVQ, two vectors called winner vector and runnet-up vector learis iFseversl conditions
are satisfied. Here two distances have to be caleulated. Learnjng takes place only if the inpur is approximarely
the same disrantmm One dismncemmmfnwm: other is from

runner to inpar layer.

54571 tVQ2

The conditions over which both vecrors are modified in tie case of LVQ 2 are the following,
1. The winner and the runner-up unit belong to different classes,

2. The runner-up vector is of the same class as the inpur vector.

- The distances berween the input vector and winner and berween the input vector and runner-up are almost
equal to each other,

If x is the current input vector, y; the reference vector closer to x (winner), y; the reference vector next closer to 5,
x (runner-up),) the distance from x to ¥, &2 the distance from x to 2, then the conditions for the updatio \)

of the reference vector can be defined as follows: ‘\)h (;\Ja\
—_— T
d i
d—')(]-ﬂ;) v \\‘,} Q}_/
2 \\\ / { \0 E
d ¥ y
d “*2 O
an) <(14€) \ N

where the value of ¢ is based on the number of wainin
are given by
nle+1) = pid-a (@) — 3] {belongs to differenc class)
2206+ 1) = pa(d+ o ([— 32091 {belongs to same class)

%y

g samples. The weight updation formulas in this cas%"%

. 165
5.5 Counterpropagation Networks

54.52 VO 2.1

ing i basis of th
In LVQ 2.1, the two closest reference vectors y1, and yz, are ‘“ke“ Here updating 1sdd(c|;|)1e on d?:s na::sb:lone
requirements thar {a) y1, belongs to the correct class for the given InpUE vectar x an il mm———?aa—ﬁ
10 the same classas x. LVQ 2.1 does not distinguish whether che closest vector is that represeatifig the correct
class or incorrect class for the given input, The condirions Jor this case are given by

S SN
w2 2] -0 £
& dh, AT TG
\’ G
and max [&, df_lf] < (148) TN
2e Ge

. ve conditions are mét, the followin
Here, it is not sure whether x is closer to y;, of 0 y2c: W1"Ien the at’: ¢ coe class as inpur V,CCEOI' then 6
weight updation formulas are used. If the reference vector belongs to the sam P !

J'lt(f +1)= ylt(t)‘l’ « (t)[x(t) -)’Ir(r)]
else el 1) = poel)— 2 OB = peld)]

5453 VO3

PR
e

h .
| min [ﬂ,ﬁc] > 1-ote)
L 2c %*lc

The weight updarions are done in a similar manner as in LVQZme ofthe m-r;‘doseﬂlvca?\s;&; belongs
to the same class as the input vector x and the other vecton J2o belc;lngs w3 ‘li‘ c%‘:‘ f\:s'ht . da[:‘ﬁ:r:
: PP . The , here,

this rraining algorithm to provide training fx._yh. and yze lqel°ns to the same class gnt up
are given by the equation —

ele+ 1) = p(-+BAEA — 5]

Replace y, with y1c Of 2, as the case may be. The learning rate B(2) is a muldiple of the learning rate w(s) thar
(3 i) .
is used if yy, and ¥y, belong o different classes, Le.,

Blo = gald)
where g is bétwec@@

5.5 Counterpropagation Networksj

I 5.5.1 Theory

Counterpropagasion networks were proposed by Hecht Nielsen in 1987.1.Th?y are anululaycr ncr:ror[l.(s bas:i
on the combinations of the inpur, outpur and clustering layers. T,hc, Eppications of COUNLETPropagation rll(:
are dara compression, function approximation and pactern ssociation. The coun:eﬂrjpropagﬂ;:t;:l nenv;)r :
basically constructed from an instar—ouestar model, This mc,.del Isa :hree-layer_ neural nenwor a]:pe; -rm;‘
inpur—ourpur data mapping, producing an outpur vector y 11 response .to an llnput ;cc]:?;;;:?c;; :(ij:v:)
competitive learning. The three layers in an instar—outstar model are the input layer, the hi pe

[‘g the two closmrvectom are allowed to learn as long a5 the inpu vector satisfies the condition (take
£=102)

!

166 Unsupervisad Leamning Networks

layer and the output layer. The connections berween the input layer and the competitive fayer are the instar
structure, and the connections existing berween the competitive layer and the outpur layer are the outstar
structute. The comperitive layer is going to be a winner-take-all nerwork or a Maxnet with fateral feedback
connections. There exists no lateral connection within the input layer and the outpur layer. The connections
berween the layers are fully connected.

A counterpropagation ner is an approximation of its training input vector pairs by adaptively con-
structing a look-up-table. By chis method, several dara points can be compressed to a more manageable
number of look-up-table entries. The accuracy of the function approximarion and data compression is based
on the number of entries in the look-up-table, which equals the numbet of units in the cluster layer of
the net.

There are two stages inveolved in the trining process of a counterpropagation net. The input vectors are
clustered in the first stage. Originally, it is assumed chat there is no topology included in the counterpropa-
gation nerwork. However, on the inclusion of a linear topelogy, the performance of the net can be improved.
The clusters are formed using Euclidean distance methed or dot product merhod. In the second stage
of training, the weights from the cluster Jayer units to the output units are tuned to obtain the desired

response. There are cwo types of counterpropagation necs: (i} Full counterpropagation nerand (ii) forward-only
counterpropagation net.

' 5.5.2 Full Counterpropagation Net

Full counterpropagarion net {full CPN} efficiently represents a large number of vector pairs xiy by adaptively
constructing a look-up-table. The approximation here is x*:*, which is based on the vector pairs x:y, possibly
with some distorted or missing elements in either vector or both vecrors. The neowork is defined to approximate
a continuous funcrion £ defined on 1 compact sec A. The full CPN works best if the inverse function £ !
exists and is continuous. The vectors x and y propagare through the network in a counterflow manner to
yield output vectors x* and y*, which are the approximations of x and y, respeciively. During competition,
the winner can be determined either by Euclidean distance or by dot product method. In case of dot product
method, the one with the largese net inpuc is the winner. Whenever vecrors are to be compared using the
dot product metric, they should be normalized. Even though the normafization can be performed without
loss of informarion by adding an extra component, yer to avoid the complexicy Euclidean distance method
can be used. On the basis of this, direct comparison can be made benween the full CPN and forward-only
CPN,

For continuous functien, the CPN is as efficient as the back-propagation net; it is a universal continuous
function approximator. In case of CPN, the number of hidden nodes required to achieve a particular level
of accuracy is greater than the number required by the back-propagacion nerwork. The greacest appeal of
CPN is its speed of learning. Compared to various mapping nerworks, it requires only fewer steps of training
to achieve best performance. This is commeon for any hybrid learning method that combines unsupervised
learning (e.g., instar learning) and supervised learning {e.g., outstar learning).

As already discussed, the training of CPN occurs in two phases. In the input phase, the units in the cluster
layer and inpus layer are found to be active. In CPN, no topology is assumed for the cluster layer unirs; only
the winning units are allowed to learn.. The weight updation learning rule on the winning cluster units is

sy(new) = wylold)+ o [x; — wylold)], i=1lrwan
wiy(new) = wylold)+ B [ye — wyleld), k=lwm

The above is stndard Kohonen leatning which consists of competition among che units and selection of
winner unit. The weight updation is performed for the winning unit.

5.6 Counterpropagation Networks 167

In the second phase of training, only the winner unit § semains active in the cluster_lay_er. The weigh'ts
berween the winning cluster unit] and the output units are adjusted so that the vector of activations of t!‘:e units
in the Y-output layer is Y* which is an approximation to the input vector y and X* which is an approximation
w the inpurt vector x. The weight updations for the units in the Y-outpur and X-output layers are

upp(new) = uylold) + alyi ~ r’g',(.('old)], E=1tom
tri(new) = g;{old) + b - gileld)], i=1lron

This is Grossberg learning, a more general case of outstar learning. Qutstar learning is Foum.f- 10 occur.for
all units in a particular layer; there exists no competirion among those units. The form of weight updation
is similar for Kohonen learning and Grossberg learning, The leaming rule for the output layers' can also .be
viewed as delea learning rule. The weight change in all these cases is the product of the learning rate and
the error. When tie occurs in the selection of winning unit, the unit with smallest index is chosen as the
winner.

5.5.2,1 Architecture

The general structure of full CPN is shown in Figure 5-15. The complete architecrure of full CPN is shown
in Figure 5-16. -

The four major components of the instar—oucstar model are the inpur layer, the instar, the competitive layer
and the outstar, For each node ¢ in the input layer, there is an input value x;, An instar responds maximally 1o
the input vectors from a particular chuster. All the inscars are grouped into a layer cafled the competiltivc layer.
Each of the instar responds maximally to a group of input vectors in a different region of space. This layer of
instars classifies any inpu vector because, for a given input, the winning instar with the strongest response
identifies the region of space in which the input vector lies. Hence, ic is necessary that _the comperitive layer
single outs the winning instar by setting its ourput s0 a nonzero vatue and also suppressing the other outpuss
10 2ev0. That is, it is a winner-take-all or a Maxnet-type nerwork. An outstar model s found to have all the
nodes in the outpur layer and a single node in the competitive layer. The outstar looks like the fnn?o!n of
a node. Figures 5-17 and 5-18 indicate the units that are active during each of the two phases of training 2
full CPN.

In the instar—outstar nenwork model, the competitive layer participates in bath the instar and outstar
structuces of the network. The function of these competitive instars is to recognize an input patcern through
a winner-take-all competition, The winner activates a corresponding ourstar which associates some desired
output pattern with inpur patsern.

y* (Qutpul}
. XUnpwh | Instar-outstar natwork "
) (Input)
L xoutpu | Instar—outstar nefwork s

Figure 5-15 General suracrure of full CPN.

. t f\L\C 3 PR~ Yl .
f—— » vv“ iy 0 .
5 °~v«l’ z
SR
0"0'/{6\:0\;‘

N

Y-output o -
P Cutstar Gulslar X-output
layer

layer

Figure 5-16 Archirecture of full CPN.

5.5 Counterpropagation Networks 169

Cluster Y-input
layar layer

Figure 5-17 First phase of training of full CPN.

Cutstar Outstar

(___/&___\(__,A__\

w X

Yk

¥Ym

Y-outpul Cluster ¥-output
layer layer layer

Figure 5-18 Second phase of training of full CPN.
5.5.2.2 Flowchart

The flowchart for the training process of full CPN is shown in Figure 5-19.
are as follows:

The parameters used in the CPN

x =input training vector X = (¥0aeeenXireess %)

¥ = target output corresponding to input x,y = (Fro-- o Bteonbm)
zj = the ourpuc of cluster layer unir z;

wj =weight from X-input layer unit X; to cluster layer unit 2;

Wy =weight from Y-input layer unic Yy, to cluseer layer unit z;

uj =weight from cluseer layer unit z; to Y-output layer unit Y7

1;; = weigh from cluster bayer unir 2; to X-output layer unit X;"

e i e e i e L v, AT 7 L

L e ———

170

Unsupervised Leaming Networks

ﬁ't'nialize weights, learning rat;|

Start phase 1 training

No

Obtain the activations of X-input
layer and Y-input to x and y

!

lFind winner cluster unit J'

Updale weights !

V,{new) = V (old) + alx-v,(old)] | |

Update weights
w(new) = w, (old) + Bly,— w{old)]

Reduce learning —les & g
a(t+1) = 0.5 e(f)
Alt+1) = 05 A1)

Input stopping learning rates

a(n), Bit)

(Stop phase 1 training)

@

Figure 5-19 Flowchart for training of full CPN,

—— e

5.5 Counterpropagation Networks

171

Start phase 2 training

Set xinpul layer activations to vector x
Set y-input layer activations 1o vecler y

]
LFind winning cluster unil Jj

Update weights into z
Viinew) =V {old) + alx— v,(old)]

Fork=1lom

Update weights inlo Z to oulput layers

w,{new) = v, (old) + f[x— v,{old)]
[

Fork=1lom

Update weights from z 10 oulput layers
u fnew) = u,fold) + aly,—~w,{old)]

I

u(naw) = tfold) + Alx—1,(old)] 1
T

Reduce learning rates & #
a(I+1) =05 e(l)
Alt+1) = 0.5 A1)

Input stopping leaming rates

a(t), (8}

- S—

Figure 5-19 (continued).

172

Unsupervised Learning Nelworks

X* = calculated approximation to vecror x
P = calculared approximarion to vector y
a, b = learning rates for weights out from cluster layer
@, B = learning rates for weights into cluseer layer
The training phase is performed here in o stages. The scopping conditions here may be number of
epochs to be reached. So the training process is performiad until the number of epochs specified is completed.

The reduction in learning rate can also be a stopping condition. The formula for reduction of learning rare is

alr+ 1) = 0.5a(z), where {2 is learning rate at time instant “#” and (s + 1} is learning rae of next epoch
for a time instant “t 4 1",

5.5.2.3 Training Algorithm

The steps involved in the training process of a full CPN are given below.

I Step 0: Set the initial weights and the initial learning rate. —l
Step 1: Perform Steps 2-7 if stopping condition is false for phase I training,

Step 2: For each of the training input vector pair x : y presented, perform Steps 3-5,
Step 3: Make the X-inpur layer activations ta vectar X.

Make the Y-inpuc layer acrivacions to vector Y.
Step 4: Find the winning cluster unir.

If dor product method is used, find the cluster unit 2j with targer net inpuc; for j = | 10 p,

" "

i = Z.\',-v,-j + Z_y;,uq,,

=1 f=

If Euclidean distance method is used, find the cluster unic z,

whose squared distance from nput
vecrors ts the smallest:

ne

D_; = Z (x ~ V_.‘j)l + Z (e — "’»(7):

i=1 L=

it there occurs a tie in case of selection of winner unirt, the unic with the smallese index is the
winner. Take the winner unit index as .

Step 5: Update the weights over che caleulaced winner uni .

Fori= 1t n. #y(new) = pylold)+ wx; ~ vy(old)]
For k= 11o0m, ninew) = 1wy lold)+ 8 1y — wyylold))

Step 6: Reduce the learning rares.

alt+ 1 =05a(); B+ 1) = 0588
Step 7: Tess ssopping condirion for phase | training,

Step 8: Perform Steps 9-15 when scopping condition is false for phase ! training,

5.5 Counterpropagation Networks 173

Step 9: Perform Steps 10-13 for each training input pair x ; y. Here erand 8 are small constant values.
Step 10: Make the X-input layer activations to vecror x. Make the Y-input layer activations to vectot y.
Step 11: Find the winning cluster unir {use formulas from Step 4). Take the winner unit index as J.

Step 12: Update the weights entering into unit .

Fori=1l1won, u,:,:(l‘lcw) = wjlold)+ alx; — vylold)]
Fork=1tom, wylnew) = wylold)+5 [y ~ wyylold)]

Step 13: Update the weights from unit z; o the outpur layers.

Fori=1lwn, ti{new) = gilold) + x; — #{old))
For k=110 m, nrylnew) = uylold) + aly, — uplold)]

Step 14: Reduce the learning rares 2 and 4.
ale+ 1) =054l He+1) =056
LStep 15: Test stopping condition for phase Il training, J -

If during training process inicial weights are chosen appropriately, then afrer the completion of phasc- Lof
training, the cluseer units will be uniformly diseributed. When phase I1 of training 1s_comp1eted, the weights
to the outpur units will be approximarely the same as the weights into the cluster unic.

5.5.2.4 Testing (Application) Algorithm

A CPN once trained can be used for finding approximations X* and Y* 10 the input—output vecror pair X
and Y. The application algorithm for full CPN is as follows:

I Step 0: Initialize the weights (from training algorithm).
Step 1: Perform Steps 2-4 for each inpur pair X: Y.

Step 2: Set X-inpur layer activations to vector X.
Set Y-inpuz layer acrivarions 10 vector Y.

Step 3: Find the cluster unit z; that is closest to the input pair.

Step 4: Calculare approximations to x and y:

I X =y gh=up |

One important variation of the CPN is operating it in an interpolation mode a'fter the craining hasl been
complered. Here, more than one hidden mode is allowed to win the competition, i.e., we havelﬁrst winner,
second winner, third winner, fourth winner and so on, with nonzero ouzpur values. On making the total
strength of these multiple winners normalized o 1, the tocal ourput will interpolace lincar_ly among CI’_IC
individual vectors. To select which nodes to fire, we can choose all those with weight vectors within a cercain
radius of thé input x, The interpolated approximations to x and y are then

=2 gt =) g
; 7

By using interpolation, the approximation accuracy is highly increased.

174 Unsupervised Learning Netwarks

l 5,5.3 Forward-Only Counterpropagation Net

A simplified version of full CPN is the forward-only CPN. The approximation of the funcrion y = f'(x) bur
not of x = f(3) can be performed using forward-only CPN, i.e., it may be used if the mapping from x te y
is well defined but mapping from y to x Is not defined. In forward-only CPN only the x-vectors are used o
form the clusters on the Kohonen units. Forward-only CPN uses only the x vectors to form the clusters an
the Kohonen units during first phase of training,

In case of forward-only CPN, first input vectors are presented to the inpur units. The cluster layer unirs
compete with each other using winner-take-all policy to learn the inpur vector. Once entire ser of training
vecrors has been presented, there exist reduction in learning rate and the vectors are presented again, performing
several iteracions. First, the weights berween the input layer and cluster layer are trained. Then the weights
becween the cluster layer and outpur layer are trained. This is a specific competitive necwork, with target
known. Hence, when each input vector is presented to the input vector, its associated target vectors are
presented 1o the output layer. The winning cluster unic sends its signal to the outpur layer. Thus each of
the outpur unir has a compured signal (w) and thie carger value (yz). The difference between these values is

calculared; baséd on this, the weights between the winning layer and output layer are updated.

The weight updacion from inpur units to cluster units is done using the learning rule given below: For
i=1lrton

- vi(new) = wylold)+ alx; — vylold)) = (1— a)uylold)+ ax;

The weight updation from cluster units to output units is done using following the learning rule: For
k=1wm,

wip(new) = wplold) + aly; — wyelold)] = (1 ~ Awplold) + ap

The learning rule for weight updation from the cluster units to outpur units can be written in che form of
delta rule when the activations of the cluster units (zj) are included, and is given as

wiplnew) = miplold) + gy — wilold)]

where

yifj=]
0 if]

Z]':

This occurs when wy is interpreted as the computed outpur {i.e., 3 = wyg). In the formulation of forward-enly
CPN also, no tapological structure was assumed.

5.5.3.1 Architecture

Figure 5-20 shows the architecture of forward-only CPN. It consists of three layers: input layer, cluster
{competirive) layer and outpur layer. The architecture of forward-only CPN tesembles the back-propagarian
nerwork, but in CPN there exists interconnections between the units in the cluster layer (which are not
conpected in Figure 5-20). Once comperition is completed in a forward-only CPN, only one unit will be

active in thar layer and it sends signal to the output layer. As inpurs are presented to the network, the desired
outputs will also he nresented simultaneously.

5,5 Counterpropagation Networks 175
{Unsupervized) (Supervized)
Instar Outstar

¥t —

Wiy
¥or |
Wik
Yy —

Y 22

Desired
outputl

v §
\ Cluster /
layer

Figure 5-20 Archicecture of forward-only CPN.

5.5.3.2 Flowchart

The flowcharr helps in depicting the training process of forward-only CPN and the manner in whicl_l Fhe
weights are updated. The training is pecformed in cwo phases. The parameters used in flowchart and waining
algorithm are as follows:

o, f = learning race parameters where @= 0.5 10 0.8 and B = 0 10 1. The typical values of learning
rates may be ¢ = 0.6 and § =1

X = activation vecror for input layer units, ie,

K= (o s Xy e)

Ilx — |l = Euclidean distance berween vectors X and v

Figure 5-21 shows the flowchart for training process of forward-only CPN.

5.5.3.3 Training Algorithm
The steps involved in the training algorithm of forward-only CPN are as follows:

l Step 0: Inirtalize the weights and learning races.
Step 1: Perform Steps 2-7 when stopping condicion for phase I craining is false.
Step 2: Perform Steps 3-5 for each of rraining inpuc X.
Step 3: Set the X-input layer acrivartions to vector X

Step 4: Compute the winning cluster unit (]). If dot product method is used, find the cluster unic 2
wich the largest net input:

n
Zjnj = Zx,'u,'j
=1

176

Unsupervised Learning Networks

Initialize weights, learning rates

Start phase 1 training

For each input vector x

Obtain X-input layer activations to vectar x

lYes

Complete winning cluster unit ()
{Euclidean distance)

Fori=1ton H---—-

;

:)
1

' i
! \
! Update weights for unit 2, '
! V (new) =V (old) + alx-vfold) | |
1 1
: ;
1]
1 1
1 1

Reduce learning rate
alt+1) =05 a(t)

Inpul stopping learning rales

alt). Bl

No If
a(t+} < afl)

Stop phase 1 training
Start phase 2 kraining

Figure 5-21 Flowchar for training of forward-only CPN.

5.5 Counterpropagation Networks

177

?

}

lTSet ceconstant smal_lvaﬂ

|

also, set output layer activations y to vector ¥

Sat Input layer activations x to vector x

s

distance or dot product

1
)
1
1
1
1
1
1
1
1
1
1
1
:
1
|
E ‘ Calculate winning cluster unlt use Euclidean (J}
E
1
|
)
1
'Y
1
]
1
T

Update weights into unit z,
v (new) = V fold) + a(x-vold)]

Update weights from unit 2, o cutput unils

i
w,l(new) = wﬁ(old) + Bly,— wﬁ(old)] i

Reduce learning rate
Blt+1) =05 B(1)

Input stopping learning rate
value 4 {t)

No

Yes
Slop phase 2 lraining

Figure 5-21 (continued).

[C PP

178

Unsupervised Learning Networks

Step 5

Step 6

Step 7: Test the stopping condition for phase I training,
Step 8: Perform Sreps 9~15 when stopping condition for phase II training is false, (Set oa small constant
value for phase II training.)

Step 9: Pecform Steps 10-13 for each training input pair x:y.
Step 10: Set X-inpur layer activations to vector X. Set Y-output layer activarions to vecror Y.
Step 11: Find the winning cluster unit (§) fuse formulas as in Step 41.
Step 12: Update che weights into unit . For i = Lo,

vi(new) = wylold)4 el ~ vylold)]
Step 13: Update the weights from unit z; 1o the ourput units. For £ = 1 1o m,
wyp(new) = wylold)+ 8 [y ~ wplold)]
Step 14: Reduce learning rate B, ie.,
Ble+1)=058{
l Step 15: Test the stopping condition for phase IT training, l

If Euclidean distance is used, find the cluster unit z7 square of whose distance from the input
pattern is smallest:

i
D;= Z (x; — v,j)z
i=1

If there exists a tie in the selection of wirner unir, the unic wich the smallest index is chosen as
the winner.

: Perform weight updation for unit z;. Fori = 1w »,
uvylnew) = vylold)+ el ~ vylold)]
: Reduce learning rate e

alt+ 1) =05al)

~. patterns should net be presented on the same cluster unit, when it is presented each time. On the basisof 7

? this, the stabilicy of the net s défined a5 that WICIEID & patfern is 00T presente i _gh;s_l;c:.&mﬁ;}fj -
Lfhe stability may be achieved by reducing the learnin ~Jhe ability of the network to respond 0 a new

The stopping condition for both phase I and phase Il training may be the reduction in learning rare or number

of iterations to be performed.

5534

Testing Algorithm

The testing algorichm used for forward-only CPN is given as follows:

I Step @
Step 1:
Step 2:

Ser initial weights. (The inicial weights here are the weights obtained during training.)
Present input vecror X.

Find unit] that is closest to vector X.

5.6 Adaptive Resonance Theory Network 179

Step 3: Set activations of outpur unis:

| Y= Wik

As in the case of full CPN, the forward-only CPN can also be used in the interpolation mode. Here, if more
than one unit is the winner, with nonzero acrivation value, then

Hence the acrivadon of the output unit is given by

= Zuy

j Lol

s
Use of intetpolation mode results in increase of accuracy. A

8¢ XV

afy ¥
I 5.6 Adaptive Resonance Theory Network i A v
SRS

L5,6.1 Theory "

=

-
The adaprive resonance theory {ART) nerwork, developed by ;éven Grossberg and Gail Carpenter (1987),
is consistent with behavioral models. This is an unsupervised learning, based on competition, that finds
categories ausonomously and learns new categories if needed. 1he adaprive resonance model was developed
to solve the problem of instability occurring in feed-forward systems. There are two types of ART: ART 1 and
ART 2. ART 1is d&siganfoTn':Tustering binary vecrors and ART 2 is designed 1o accept continuous-valued
vectoss. In both the nets, inpur patterns can be presented in any order. For each partern, presented ro the
necwork, an appropriate cluster unit is chMMmﬁing!&ﬂM@Miﬂﬂtaﬂm r
unic learn the pattern, This network controls the degree of similarity of the patterns placed on the same cluster
p}lligs;ljufih‘g._t}aining. each training pattern may be presented several umes. It should be noted thart the mput

I
pattern equally at any stage of learaing is mlledﬁﬁr; T nets are designed to possess the properties, ~

stability and plasticity. The key concept of ART is that the stability plascicity can be resolved by a system a’“,
in which the network includes bottom-up (inpur—ourpur) competitive learning combined with rop-down
(output=inpur) learning. The instability of instar—ourstar nerworks could be solved by reducing the learning

rate gradually to zero by freezing the learned caregories. But, at this point, the nev may lose its plassicity or

the ability to react to new dara. Thus it is difficult to possess both stability and plasticity. ART nerworks are
designed particulally o rescive the srability-plasticicy dilemma, chat is, they are stable o preserve significane

past learning but nevertheless remain adaptable o incorporate new information whenever it appears.

5.6.1.1 Fundamental Architecture .
\:Tl'hr groups of neurons gre used o build an ART nerwork. These include: ' S

L. Input processing neurons (F layer). hs &

s

180 Unsupervised Leaming Networks

2. Clustering unies (F2 layer}.
3. Control mechanism {(conrtrols degree of similarity of patterns placed on the same cluster}.

The inpur processing neu nsists of : [nput portion and interface portion. The
input portion may perform(some processing based on the inputs it feceiv&yThis is especially performed in
the case of ART 2 compared to ART 1{The interface portion of the Fy layer combines the input from input
portion of Fy and F; layers for comparitig the similari
GSter ol selected as a unit for learning,
interface portionas F(b). - —
There exist two sets of wei intetconnections for controlling the degree of similarity berween the units
in the interface portion and the cluster layer. The bottom-up weights are used for the connection from Fy (b)
layer to Fytayerand are represented 5y #(7th F1 unic to fth F3 unit). The top-down weights are used for the

of the inpur signal with the weight vector for the
layer input portion may be denoted as F(a) and

connection from F; layer to Fy (b) layer and are represented by #; (jth F3 unit to ith Fy unit). The competitive
layer in this case is the\elster laydr and the duster unit with largest net inpur is the victim to learn it
pattern, and the acrivations of all other F» umis are T 2eT5; The Tnterface units combing the dam from

input and cluster layer unis. O the basis of the similarity becween the top-down weighe vector and input

vecror, the cluster unit may be allowed to learn the input partern. This decision is done by-
unit on the basis ¢ ¥ i i inpur portion of the Fy layer. When
cluster unit is not allowed to learn, it is inhibited and a new cluster unit is selected as the vicum.

5.6.1.2 Fundamental Operating Principle

In ART network, presentation of one input pattern forms 2 learming trial. The activarions of all the units
in the ner are sec to zero before an input panw units inmé. On
Presentation of 4 pattern, the input signals are sent continuously@ﬂw& There
exists a user-defined parameter, called vigilance parameter, which controls the dégree of similarity of che
pattetns assigned to the same cluster unit. The function of the reser mechanism is w control che stare of each

in_Fa layer. Each unit in F3 layer, at any time instant, can be in any one of the three states mentioned
Below. - j\v(}\ L

- AT AN - PR N

@\ (! : ti b

1. Active: Unicis ON. The activation in this case isequai to 1. For ART 1, = | and forART 2,0 < 4 < 1.

2. Inactive: Unitis OFF Theactivation hereis zero and the unit may be available to parricipate in competitian.

3. Inhibired: Unit is OFF. The acrivation here is also zero but the unit here is prevented from participating
in any further competition during the presentation of cutrent input vector,

The ART nets can perform their learning in owo ways: Fastlearning and slow learning, The weight updarion
takes place rapidly in fast learning, relative to the length of time a pattern is being presented on any paniicular-

learning trial. In fast learning, the weights téach equilibrium in €ach trial. On the contrary, in slow learning
the weight change occurs slowly relative to thetimetaken for a learning trial and the weights do not reach

equilibrjum in cach traf, More patterns have 10 be presented for slow learning compared 1o that for fast

3=

learning, Tor each learningrial, there occurs only minimum number of Caltufations in STow learning, In case

~ - . .- e — - -
of fast learning, the ner is considered to be stabilized when each pattern closes its Correct cluste S
The paccern: i i rwork, hence the weights assw uniz stabilize

in the fast learning mode. The weighe vectors obtain

riate for the type of Input parierns used

in ART 1. In case of ART 2 nefwark, the weights produced by fast learning corilrlfl%c;h’a.nje’cg;h time

—_—— - H -t -‘_‘_\A_, i)
a pattetn is presented. The net is found to seabilize only afier few presentacions of €ach raining patrern.
It i§"noc easy to find equilibrium weights immediarely for ART 2 as it is for ART 1. In slow learning

~F
o

5.6 Adaptive Resananca Theory Netwark 181

process, the weight changes do not reach equilibrium during any particular learning trial and more trials
are tequired before the net seabilizes. Slow learning is generally not adopred for ART 1. For ART 2, the
wéigh‘tl_sp—rm&mmning are far better than those produced by fast leaming for particular types
of dara g

—

5.6.1.3 Fundamental Algorithm

This algorithm discovers clusters of a set of patrern vectors. The steps involved in various stages of training
algorithm are as follows:

mp 0: Initialize the necessary parameters.” j
Step 1: Perform Steps 2-9 when stopping condition is false.
Step 2: Perform Steps 3-8 for each inpur vector.
Step 3: F| layer processing is done.
Step 4: Perform Steps 5-7 when reset condition is true.

Step 5: Find the victim unit to learn the current input pattern. The victim unit is going to be the F3 unit
{that is nar ighibired) with the largest input.

Step 6: \F_l__(b) units combine their inputs from F(a) and sz

Step 7: Test for reser condition. .
If reset is true, then the current victim unit is rejected (inhibited); go ro Step 4. If reset is false,
then the carrent vicim unit is accepred for learning; go to next step (Step 8).

Step 8: Weight updation is pecformed.

ljrep 9: Test for stopping condition. J

The ART network does not require all training pacterns to be presented in the same order, it also accepts
if all patterns ate presented in the same order; we refer to this as an epoch. The flowcharr showing the flow
of rrahiing process i rately for 2.

IS.B.Q Adaptive Resonance Theory 1

Adaprive resonance theory 1 (ART 1) nevwork is designed for binary input vectars. As discussed generally, the
ART 1 ner consists of two fields of units—input unit (F) unit) and output unit (F3 unit)-along with the reset
contro) unit for controlling the degree of similarity of patterns placed on the same cluster unic. There exist
two sers of weighted interconnecrion pach berween Fy and Fa layers. The supplemental unic presentin the net
provides m&mumc&ss. Carpenter and Grossberg have designed ART 1
nerwork as a real-time system, In ART 1 network, it is not pecessary to present an input pattern ina pardicular
order; it can be presenced in any order. ART 1 network can be pracrically implemented by analog circuits
governing the differential equations, i.e/, the botrom-up and top-down weighrs ace coner i
equatﬁﬁﬁ"mmork runs throughout autonomously. It does not require any external control signals
and dandun stably with infinite patterns of inpur dara.

ART 1 network is trained using [as¢ learning_method, in which the weights reach equilibrivm during each
learning trial. During this resonar??,?‘l-:fmE ctivarions of F] units do not change; hence the equilibrium
welights can be decgrmi he ART 1 nerwork performs well with petfect binary input patterns, but
it'Ts sensitive to noise in the inpur dara. Hence care should be caken to ha,ndl;c/t,hc»no"ﬁ?'\/[

- Y :Y}
@ uf:‘p‘w PR { ""-\ | ((ﬂ'\
H .

o 5’"/" o

j.l‘

182 Unsupervised Leamning Networks

5.6.2.1 Architecture
The ART 1 network is made up of two units:

1. Compurational units, ~

2. Supplemental units,

In this section we will discuss in decail about these two units.

Computational uniss

The computational unit for ART 1 consists of the following:

L. Input units {F) unit — both input porrion and inrerface portion).
2. Cluster units (Fy unit — ourpuc unit),

3. Reser control unit (controls degree of similarity of patterns placed on same cluster).

. The_ basic architecture of ART 1 {computational unit) is shown in Figure 5-22. Here each unir present
in t}}e input portion of Fy layer (i.e., F)(a) layer unit) is connected 1o the respective unit in the interface
: wuayer_(i_:., F1(b) layer unit). Reset control tnic has connections From eaciof F1{z) and Fi (b)
= units. Also, each unit in F((b) layer is connected through two weighted interconnection paths to each unit
in Fy Iay_cr and the reser control unit is connected to every Fy unit. The X; unit of Fy(b) layer is connected

to Y; unit of F; Jayer ‘through bortonT= i f-wic of Fy is connected to X; unit of)
- through rop-down weights (). Thus ART 1 includes a borrom-up mmgw i ing-system combined
.-——wich a rop-down outstar learning system. In Figure 5-22 for simplicity only iphted inserconnccrions
b,-j and 4i are shown, the ather units’ weighted interconnections are in a similar way. The cluster layer (F;

layer) unit is a competitive layer, where only thé uninhibited node with the Jargest net input jnas nonzero
N j

.. activation. -

=

(Beset controt unit)

5
]
o
>
S; «
&
A s
B
Sﬂ

F,(a} layer
input portion interface portion cluster unit

Figure 5-22 RBasic archirecture of ART 1.

U—) A

5.6 Adaplive Resonance Theory Network 183

Supplemental units

Figure 5-23 shows the supplemental unit interconnection involving two gain control ynits along with one
reset unic. The discussion on supplemental units is important based on theoretical point of view.

Difficulty faced by computational wnits: It is ngcessary for these units 1o respond differendy at different
stages of the process, and these are not su sorted By any of the biolog] .
'Iﬁér:_&%c-u?y is that the operation of the reser-inechanism is not well defined for irs implementation
in ral systems. e
mcuﬁu are rectified by the introducriongof two supplemental units (called as gain con-
trol unis) Gy and Gz, along with the reset control unic E These three units rggeive signals from and
send signals 10 all of the units in inpur layer and cluster layer. In Figure 5-23, the excitatory weighted
signals are denoted by “+'"and inhibitory signals are indicated by “—." Whenever any unit in desig-
narted layer is “on,” a signal is sent. F1(b) unit and F» unit receive signal from three sources. Fy(b) unic
can receive signal from either Fy{a) unic or Fy units or Gy unic. In the similar way, Fo unit réceives sig-
nal from either Fy(b} unit or reset control unit R or gain control unit Gy. An Fi(b) unit or F2 unit
should reccive two excitatory signals for them to Be on. Both F(b) unit_ﬁdm‘si—g——
rals through three possible ways; this is called as two-thuds Tl TFhe Fy(b) unit should send a signal

wheneyer it receives input Fromlfl(a) and o F2 node is actve] After an Fz node has been chosen in
competition, it is necessary that only F1(b} units whose nput sighal and top-down signal march remain

constant. This is performed by the two gifi g UMits G 3, 10 addition with two-thirds rule.
Whenever Fy unit is on, Gy unit is inhibited.{When no F2 unir is omn, each F; interface unic receives a
signal from Gy unig; here, all of the units thatTeceive a positive inpuc signal from the inpur_vecror pre-

sented fire. In the same way, G unit controls the firing of Fp unis, obeying the twe thirds rule. The choice
of parameters and initial weights may also be based on two-thirds rule. On the other haiid, the vigilance
matching is controlled by the reser control unit R. An excitatory signal is always senlio R when any unit
in F(a) layer is on. The scrength of the signal depends on how many F; (inpur) unirs are on. It should
be noted thar the reser control unit R also receives inhibitory signals from the Fy interface units that are
on. If sufficient number of interface unirs is on, then unit “F” may be prevenied from firing, When unic
“R” fires, it will inhibic any F; unit that is on. This may force the F2 layer to choose a new winning
nade. T

PEAEE 5

-y

F, layer i +
(cluster units)
i

b, f

Y
F,(b) layer ‘
{interface porticn) +

G, Gg

F.(a) layer
{input portion)

Figure 5-23 Supplemenal unit of ART 1.

184 Unsupervised Laaming Networks

5.6.2.2 Flowchart of Training Process
The flowchart for the training process of ART 1 nerwork is shown in Figure 2. The parameters used in
flowchare and training algorithm are as follows:

n = number of components in training input vector

m = maximum number of cluster units that can be formed

p = vigilance parameter (0 to 1)

by = borrom-up weights (weights from X; unic of Fy (b) layer to Y} unit of Fy layer)

%; = top-down weighes (weights from Y units of Fy layer to X; unit of F1(b) layer)

s = binary inpur vector

[l%]l = norm oncctor x that is defined as the sum ofcomponents ofx{i=1r0n)

Initially, binary input vector “’s” is presented in the Fy (ﬂa}\yer_’i" mgnals are sent to the corresponding
X layer, i.¢., F1(b) layer. Each F (b} layer sends the activation to the F; layer over the weighted interconnection

paths. Each F7 layer unit then calculates the net input. The unit with the largest net inpur is selected as the
winnef and will have acrivation”1,” the other units” activation will be 0. The winning uni is specified by its

index “].” Only this winner unit can learn the current inpur pattern, Then the signal is send from F; Jayer
to Fy (b} layer over the top-down weights (i.e., signals ger multiplied with rop-down weights). The X unics

presenc in the intetface portion F (b} layer remain on, only if they receive a no ignal from both Fyfa) ™ ; 2
ﬂw /%—%@x\

f* \
Now we calculate the factor [lxlf. The norm of vector x gives the number of components in which the o

2

top-down weight vector for the winning F3 uni Tiput vector 5 are both 1. This is called Mazch. The
ratio of norm of %, ||x||, to norm of s, |5, is called Match Ratw, Whi t than or equal to vigilance
parameter, then both the wop-down and bottom-up welghts have to be ad)u.sted Thisis calleé Teset condmon)‘
That is CT

. IF [IxIl/s}f =>p, then weight updacion is done. This testing condition is called reser condition. ,\"

* If lx|I/ sl < p. then cureene _unit is rejected and another unir should be chosen. The current winning

cluster unit becomes inhibited, so this unit again cannor be ChDSE? as a unit, on this particular learning
ULl —

.-—"__—"_'\._
trial, and the acnvauons‘ﬂe_F units are_[eset 1o zgro. v _Pf..

This process is repeated until a sansfactory martch is found (umts get accepred) or until all the units are
inhibited.

5.6.2.3 Training Algorithm
The training algorithm for ART | nerwork is shown below.

T Fa

ﬁtep 0: Initialize the parameters: . -

Inicialize the weights:

5.6 Adaptive Resonance Thaory Network 185

Step 1: Perform Steps 2-13 when stopping condition is false.
Step 2: Perform Steps 3—12 for each of the training input.
Seep 3:

Step 4

Ser activations of all Fy units to zero. Set the activations of Fi(a) units to input vectors.
Calculate the norm of 5

EEDI

: Send input signal from Fi(a) layer ro F) (b) layer:
%=

ode that is not inhibited, the following rule should hold: If y; # —1, then

1 .
Eiform Steps 8-11 when reser is true, i

: Find] for yy = y; for all nodes /. If yy = —~1, then all the nodes are inhibited and aote thar this

pattern cannot be clustered.

Step 9: Recalculare acrivation X of Fy (b):
Xy _—-rl-rjl k_'7|
Step 10: Calculate the norm of vector x .\) J
=Y
i
Step 11: Test for reset condirion.

IF l=l)/|lsll < o, then inhibit node], yy = —1. Go back to step 7 again,
Else if fix}i/|ls{l = p, then proceed to the nex step (Step 12).

Perform weight updation for nodeﬂl_[fa,s_tlcaming):.-——"’"?\d

ax; \-\

_ﬁFEJ
r Lj, new} ﬂ

Step 13: Test for scopping condition. The followmg may be the stopping conditions:
a. Ne ClEESE_i.n weights.

b, No reser of units.

Step 12:

,](new)

L c. Maximum number of epochs reached. |

When calculating the winner unit, if there occurs a tie, the unit wich smallest index is chosen as winner.
Note thatin Step 3 all the inhibitions obtained from the previous learning trial are removed. When yy = —1,
the node is inhibited and it will be prevented from becoming the winner. The unit % in Step 9 will be ON
only if it receives both an external signal s; and the other signal from Fz unit to F (b} uni, 4;. Note that g;
is either 0 or 1, and once it is set to 0, during learning, it can never be set back to 1 (provides stable learning

method).

186

Unsupervised Leaming Networks

{ Start)

vigilance parameter 0 < p <1 |

Inittatize weights,

L o)=1
0<b,(0) <=7 {0

Make activations of all F {a} units
1o input vectors and F, units to zero

Calculate norm of “s™
s = Zs,

Send ifp signal from F(a) to F (b}
X=35,

o For each node that is o
o nol inhibited

1

L

]

'

i

1

T Calculate net input
{y, = LBX™

1: /)

1

1

]

.

e — e A= — =
e —

------------- Continue -

Figure 5-24 Flowchart for mraining of ART | nerwork.

Initialize learning irial L > 1 A

5.6 Adaptive Resonance Theory Network

187

pheck False Inhibit
for

nede j
fesel,
True|
Find j, where Y = Y,
for all node §
-
Ali nodes inhibiled and

pattern cannok be clustered

Recalcutate activation X of F (b)

X= 51’,‘.'
Calculale norm of x
Ixi=2x A
A -~
£
AV
Y,=—1 False -
inhibit node J) >
True
Weight updation
ax
b {new) = ——t—
» (W) = T x
L {new) = x,
® - - - ----®

Test for
stopping condition
1. no weighl change
2. no unils raset
3. more no. of

epochs

Figure 5-24 (conrinued).

|
188 Unsupervised Leaming Networks [5.6 Adaplive Resonance Theary Network 189
The optimal values of the initial parametersare =2, p = 0.9, &5 = U/l + nand g = 1. The algorithm 1

uses fast learning, which uses the fact that the input pattern is presented for a longer period of time for weights
1o reach equilibrium, . i

I 5.6.3 Adaptive Resonance Theory 2

Adaptive resonance theory 2 {ART 2) is for continuous-valued input vectors. In ART 2 network complexity :
is higher than ART | network beeause much processing is needed in Fy layer. ART 2 nerwork was developed !
by Carpenter and Grossberg in 1987, ART 2 network was designed to self-organize recognition caregories
for analog as well as binary input sequences. The major difference between ART 1 and ART 2 nerworks is
the input fayer. On the basis of the stability criterion for analog inputs, a three-layer feedback systém in che
input layer of ART 2 network is required: A bottom layer where the input patterns are read in, a top layer
where inputs coming from the output layer aré read in and a middle layer where the tap and bottom parterns
are combined rogether to form a marched patrern which is then fed back to the rop and bortom inpur layers.
The complexity in the Iy layer is essential because continuous-valued input vectors may be arbirrarily close
together. The Fy layer consists of normalization and noise suppression parameter, in addicion to comparison
of the bottom-up and top-down signals, needed for the reser mechanism.
The continuous-valued inputs presented to the ART 2 network may be of two forms. The first form
is a “noisy binary” signal form, wherse the information about patterns is defivered primarily based on the
components which are “on” or “off,” rather than the differences existing in the magnitude of the components
that are positive. In this case, fast learning mode is best adopted. The second form of patterns are those,
in which the range of values of the components carries significant information and the weight vector for a
cluster is found to be interpreted as exemplar for the patterns placed on that unit. In this rype of pattern, slow
learning mode is best adopted. The second form of data is “eruly continuous.” Figure 5-25 Architecrure of ART 2 nerwork.

Input
units

S;(input patiem)

5.6.3.1 Architecture

A typical architecture of ART 2 network is shown in Figure 5-25. From the figure, we can notice that Fy layer
consists of six types of units—- W, X, U, V, P, Q —and there are “#” units of each type. In Figure 5-25, only
one of these units is shown. The supplemental parr of the connection is shown in Figure 5-26.

The supplemental unit “N” between units W and X receives signals from all “W” units, computes the
norin of vector w and sends this signal to each of the X units. This signa! is inhibitory signal. Each of this
X1y ... Xiv ..., X,) also receives excitatory signal from the corresponding W unir. In a similar way, there
exists supplemenal units between U and V, and P and Q, performing the same operation as done beaween W/
and X. Each X unit and Q unit is cannected to V unit. The connections becween P; of the Fy layer and Yj of
the Fy layer show the weighted incerconneceions, which multiplies the signals transmitted over those paths.
The winning Fz unics’ activation is (0 < & < 1). There exists normalization between W and X, V and U,
and P and Q. The noemalization is performed approximately o unit length.

The operations performed in F; layer are same for both ART 1 and ART 2. The units in F; layer compete
with each other in a winner-take-all policy o leatn each input pauern, The testing of reset condition differs
for ART 1 and ART 2 newworks. Thus in ART 2 network, some processing of the inpur vector is necessary
because the magnitudes of the real valued input vectors may vary more than for the binary input vectors.

5.6.3.2 Algorithm

A derailed description of algorithm used in ART 2 network is discussed below. First, let us analyze the
supplemental connection berween W; and X; unis.

Figure 5-26 Supplemental part of connection berween W and X.

190 Unsupervised Leaming Networks

Supplemental connection between W; and X; units

_ As discussed in Secrion 5.6.3.1, there exist supplemental connecrions berween W and X, U and V, and P and
Q. Each of the x; receives signal from w; unics. After receiving, it will caleulace the norm of w, ||| and then
sends thar signal to each of the X units, Normalizacion is done in the F{ units from Wto X, Ve Uand P 1o
Q. Each of the X; units are connected 1o V; and Q; units are also connected to V;. The weighes a, b, ¢ shown
in Figure 5-25 are fixed. The weights on the connection path indicate the transformation waking place from
one unit w0 other {no multiplication takes place here), i.., u; is rransformed to ax; but not multiplied. When
signals are wransferred from Fy units w F; units, Le, from Py to ¥j, the multiplication of weights is done.
The activation of the F; unic is “4™ which ranges between 0and 1 (0 < & < 1). It should be noted that these
activations are continuously changing,

Processing of By layer and Fy layer

For understanding the training algorichm of ART 2 necwork, it is important o know the processing of
Fj and Fy layers. In Fy layer, the outpur activation from P; is p and output activation from Q; is 4. The
activation vector 4, which is the activation of Q; units, should be equal to vector p, activacion of P; units thac
is normalized approximately for unic length. U; unic performs similar process of Fy(a) layer of ART 1 and
P; unit performs similar process of Fy(b) layer of ART 1 network. The activation function used here is the
functional representation of noise suppression parameter “Q,” and is given by

x x=8

fla= 0 x<8

The noise suppression parameter Q is defined by the user and is used to achieve stability. Seability occurs where
there is no reset, i.c., the same winner unit is chosen in the nexc erizl also. Units x; and Q; apply activarion to
Vi, which sippresses the components to achieve suabiligy. Hence Q is used here.

In ART 2 network continuous processing of the input units is done. The continuous-valued inpur signals
§ = [s1,..., 8. .., 5,) are sent continuously, For each learning trial, one input pattern is presented. Ac the
beginning of training, the activations are set o zero, i.e., inactive not inhibit. The compuration cycle for a
particular learning trial within Fy layers starts with n; which is equal to acrivation of V; approximated 1o unit
length. Unit x; is given by

vi

T

where “¢" is a small parameter for preventing the division by zero when ||#]| becomes zero. Also g; and x; are
given by

W
e+ {pll”

;= X =
4 el

The noise suppression parameter is applied only o x; and g;.
The signal will be sent from each unit of #; o w; and p;. The activations of units w; and p; have to be
done. The activation of w; is the sum of inpur signal received (5) and au;:

wi = 5+ au;

P; is found o receive signals from #; and top-down weights, i.e., sums #; (activaton of #;) and top-down
weigh (£7), and Is given by

Pi=w+ a’tj,-

5.6 Adaplive Resonance Thoary Network 191

where 4 is the activation of winning Fa unit. Before entering inco V;, activation function is applied to each of
%; and Q; units. Unit V; sums the signals from x; and Q; which receive signal concurrendy:

v = flx) + 6 (g)

Activation function is designed to select the noise suppression parameter (user specified “Q"). Accord-
ing to Carpenter and Grossberg, the activations of P; and Q; (i.e., the ourputs) will reach equilibrium
(stable set of weights) only after two updates of weights. This completes the phase I or one-cycle pro-
cess of Fy layer. Only after Fy units reach equilibrium, the processing of Fz layer starts (i.e., after three
updates).

F; layer being a competitive layer uses winner-take-all policy to determine its winner. Dot product method
may be used for the selection of the winner. When the top-down and weight vector remain similar, then thar
unit is the winner (active). If for a unit, the top-down and input vectors are not similar, then that unit becomes
inhibit. This layer receives signals from P; units via bottom-up weights and P; units in turn send signals 1o F;
unit. Here only the winner unic is allowed to learn the input partern S;.

The reser mechanism controls the degree of similarity of the inpuc patterns. The checking for reset con-
dition in ART 2 differs from ART 1 nerwork. The reset is checked every time it receives signal from #;
and P,‘.

In fast learning mode, the updation of weighes is continued until the weighes reach equilibrium on each
trial. It requires only less number of epochs, but a large number of iterations through the weight update-F,
portion must be performed on each learning trial. Here, the placement of pacterns on clusters stabilizes, but
the weight will change for each pattern presented.

In slow learning mode, only one iteration of weight updates will be performed on each learning trial.
Large number of learning trials is required for each pactern, but only little compuration is done on each rial.
There is no requirement that the patterns should be presented in the same order or that exactly the same
set of patterns is presented on each cycle through them. Thus it is preferable to have slow learning than fast
learning.

Computations for algorithm

The following computations have 1o be performed in several steps of the algorithm and are referred as

“updation of F; activations.” Unit J is the winning F3 unit after competition is completed. If no winning unit

is chosen, then “4™ is zero for all units. The calculations for P; and wy, and x; and g; can be done in parallel.
Fy layer consists of six units; the update Fy activations are given by

vy

w = m: P;=u+dy
—_— + .- J— wi
W =S au; A= et ol
pi
i = ——— v =) + bf (g
g e+ 7] v = flx) + 6f ()
The activation function is given by
x flx) =20
=10 r<o

|

192 Unsupervised Leaming Networks | 5.6 Adaptive Resonance Theory Network 193

5.6.3.3 Flowchart ".
The flowchart for the training process of ART 2 network is shown in Figure 5-27. The flowchart clearly '
depicts the flow of the training process of the network. The check for reser in the flowchart differs for ART 1 ‘ Update of F, unis activations again
and ART 2 nerworks, v LT
Te] (el
b

o)

Iniliatize the parameters
abedeapq ———-

specify i A
No. of epochs of training - nep

No. of learning iterations - nit

1

1

1]

‘

1

! ICalculate signals to F, units|
H y=LbP

]

1
:
1

Inhibit j,
that pattern|
will not be

clustered

r

Present input veclors

@ N Find winner F, unit y,
where y = ¥,

P
'etlvl

® ————— { Fori=1ton 3 ————— —® p=u+d,

= u+ep,
et +clipl

Calculale p-o

Update activations of F, unit

{u=0] [w=s |
" er|lsl]

= : y=11
tnhibit §

Figure 5-27 Flowchare for training of ART 2 network. Figure 5-27 (cominued).

194

Unsupenvised Leaming Networke

W',= sf + aul
W

%™ o+w]
P
Y= o+]ol

v,= fx) + bilq)

- For no. of learning iterations nit > - -
< lg e it

Update weights for learning unit /
f,= adu+ {i+edid-1}} 1,
b, = gdu,+ {1+ad{d-1} b,

!

Update F, activations
./ x= W
] et
P

ol

for no. of
apochs

True

Figure 5-27 (conunued).

5.6 Adaptive Resonance Theary Network

5.6.8.4" Training Algorithm
The training algorithm of ART 2 necwork is shown below.

195

| Step 0: Inirialize the following paramerers: a, b, ¢, d, ¢, @, 0, 8. Also, specify the number of epachs of

training (nep) and number of learning iterations (nir).
Step 1: Perform Steps 2-12 (nep) times. 7
Step 2: Perform Steps 311 for each input vector ».
Step 3: Update Fy unit activacions:

u;=0; w;=:;; Pi=0; 4=0; »=fla)h

5
xXp= —
e+ il
Updare Fy unic activacions again:
v; +
u = T =5+ aug)
B T
wi
Pi=ny x=—m—;
T e+ [l
pi
;= voow =) + 6f (g
qi et "P" i f(l) f%

In ART 2 newworks, norms are calculated as the square root of the sum of the squares of the

tespective values.

Step 4: Calculare signals to F3 units:

5= bipi
=1

Step 5: Perform Steps 6 and 7 when reset is true.

Step 6: Find F3 unit Yy with largest signal (] is defined such that 5 2 5,7 = 1 o m).
Step 7: Check for reser:

v 1 + P;
w=——- Pi=witdy ri=———
e T T T e+ il

If)|rl < (p —e), then yy = —1 (inhibit J). Resec is true; perform Step 5.
If |7l = (p —é), then

+ i
p= g b Ay = ————
w, 5, ¢, X, "+”w”
Pi
i = iovi= o) (g
5= iR

Reset is false. Proceed to Step 8.

Step 8: Perform Steps 9-11 for specified number of learning iterarions.

196 Unsupervised Learning Networks

Step 9: Update the weights for winning unic J:

= ad; + {[1+adld — 1))y
by = adu; + {[1+adld - D]}y

Step 10: Updare Fy acrivarions:

U,. - s = i o
;= ;—+—"Lﬁ_ w; = §; 4 au;,
Pi=witdyn xi= -—LZ
e+ lwl|
P:
i = ——— wi=flg) + bflg)
5= f f g

Step 11: Check for the stopping condition of weight updarion.
l Step 12: Check for the stopping condition for number of epochs.

In the above algorithm, at resonance period, reser will not occur and new winning unit cannot be chosen.
Since in slow learning number of learning iterations is 1, Step 10 in training algorithm need not be processed.
Perform Step 8 unil the weigh changes are below some specified tolerance. If slow learning is performed,
then repeat Step 1 until the weight changes are below some specified tolerance. If fast learning is adopred,
then repeat Step 1 until the patierns placement on the cluster units do not change from one epoch to the next.

5.6.3.5 Sample Yalues of Parameler
The sample values of the parameters used in ART 2 nerwork and their role in effective training process are
mentioned below,

n = number of F; layer inpur units

m = number of F layer cluster units

a b= fixed weights present in the Fy layer. The sample values are 2 = 16 and 6 = 10; when @ = ¢
and # = 0, the ner becomes instable

¢ = fixed weight for esting of reser. The sample value is £ = 0.1. For small ¢, larger effective range
of the vigilance parameter is achieved

d = activation of winning F; unit. Sample value is & = 0.9. The values of c and d should be selected

satisfying the inequality cdfl — & < 1. The value of cdf1 — 4 should be closer ro 1, so that

effective vigilance could be achieved

a small parameter included to prevent division by zero error when the norm of vector is zera.

8= noise suppression parameter. A sample value of noise suppression parameter is @ = 1/./n. The
components of the normalized input vector, which are less than this value, are set 1o zero.

o = learning rare paramerer. In both slow and fast tearning methods, a small value of @ slows down
the learning process.

p = vigilance pafameter used in reset condition. Vigilance parameter can range from 0 to 1. For
effectively controlling the number of clusters, a sample value of 0.7-1 may be aliowed. The
range of p may also be affected by th