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Introduction to Automata 

Theory

Reading: Chapter 1
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What is Automata Theory?

 Study of abstract computing devices, or 
“machines”

 Automaton = an abstract computing device
 Note: A “device” need not even be a physical 

hardware!

 A fundamental question in computer science: 
 Find out what different models of machines can do 

and cannot do

 The theory of computation

 Computability vs. Complexity
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Alan Turing (1912-1954)

 Father of Modern Computer 
Science

 English mathematician

 Studied abstract machines called 
Turing machines even before 
computers existed

 Heard of the Turing test?

(A pioneer of automata theory)
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Theory of Computation: A 

Historical Perspective

1930s • Alan Turing studies Turing machines

• Decidability

• Halting problem

1940-1950s • “Finite automata” machines studied

• Noam Chomsky proposes the 

“Chomsky Hierarchy” for formal 

languages

1969 Cook introduces “intractable” problems

or “NP-Hard” problems

1970- Modern computer science: compilers, 

computational & complexity theory evolve
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Languages & Grammars

Or “words”

Image source: Nowak et al. Nature, vol 417, 2002 

 Languages: “A language is a 
collection of sentences of 
finite length all constructed 
from a finite alphabet of 
symbols”

 Grammars: “A grammar can 
be regarded as a device that 
enumerates the sentences of 
a language” - nothing more, 
nothing less

 N. Chomsky, Information 
and Control, Vol 2, 1959
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The Chomsky Hierachy

Regular

(DFA)
Context-

free

(PDA)

Context-

sensitive 

(LBA)

Recursively-

enumerable 

(TM)

• A containment hierarchy of classes of formal languages
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The Central Concepts of 

Automata Theory
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Alphabet

An alphabet is a finite, non-empty set of 
symbols

 We use the symbol ∑ (sigma) to denote an 
alphabet

 Examples:
 Binary: ∑ = {0,1} 

 All lower case letters: ∑ = {a,b,c,..z}

 Alphanumeric: ∑ = {a-z, A-Z, 0-9}

 DNA molecule letters: ∑ = {a,c,g,t}

 …
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Strings

A string or word is a finite sequence of symbols 
chosen from ∑

 Empty string is  (or “epsilon”)

 Length of a string w, denoted by “|w|”, is 
equal to the number of (non- ) characters in the 
string
 E.g., x = 010100  |x| = 6

 x = 01  0  1  00  |x| = ?

 xy = concatentation of two strings x and y 
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Powers of an alphabet 

Let ∑ be an alphabet.

 ∑k = the set of all strings of length k

 ∑* = ∑0 U ∑1 U ∑2 U …

 ∑+ = ∑1 U ∑2 U ∑3 U …
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Languages

L is a said to be a language over alphabet ∑, only if L  ∑*

 this is because ∑* is the set of all strings (of all possible 
length including 0) over the given alphabet ∑

Examples:

1. Let L be the language of all strings consisting of n 0’s 
followed by n 1’s: 

L = {, 01, 0011, 000111,…}

2. Let L be the language of all strings of with equal number of 
0’s and 1’s: 

L = {, 01, 10, 0011, 1100, 0101, 1010, 1001,…}

Definition: Ø denotes the Empty language

 Let L = {}; Is L=Ø? NO

Canonical ordering of strings in the language
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The Membership Problem

Given a string w ∑*and a language L 

over ∑, decide whether or not w L.

Example:

Let w = 100011

Q) Is w  the language of strings with 

equal number of 0s and 1s?
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Finite Automata

 Some Applications
 Software for designing and checking the behavior 

of digital circuits

 Lexical analyzer of a typical compiler

 Software for scanning large bodies of text (e.g., 
web pages) for pattern finding

 Software for verifying systems of all types that 
have a finite number of states (e.g., stock market 
transaction, communication/network protocol)
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Finite Automata : Examples

 On/Off switch

 Modeling recognition of the word “then”

Start state Final stateTransition Intermediate 

state

action

state
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Structural expressions

 Grammars

 Regular expressions

 E.g., unix style to capture city names such 

as “Palo Alto CA”:

 [A-Z][a-z]*([ ][A-Z][a-z]*)*[ ][A-Z][A-Z]

Start with a letter

A string of other 

letters (possibly

empty)

Other space delimited words

(part of city name)

Should end w/ 2-letter state code
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Formal Proofs
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Deductive Proofs

From the given statement(s) to a conclusion 

statement (what we want to prove)

 Logical progression by direct implications

Example for parsing a statement:

 “If y≥4,    then 2y≥y2.”

(there are other ways of writing this).

given conclusion
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Example: Deductive proof 

Let Claim 1: If y≥4, then 2y≥y2. 

Let x be any number which is obtained by adding the squares 

of 4 positive integers.

Claim 2:

Given x and assuming that Claim 1 is true, prove that 2x≥x2

 Proof:

1) Given: x = a2 + b2 + c2 + d2

2) Given: a≥1, b≥1, c≥1, d≥1

3)  a2≥1, b2≥1, c2≥1, d2≥1 (by 2)

4)  x ≥ 4 (by 1 & 3)

5)  2x ≥ x2 (by 4 and Claim 1) 

“implies” or “follows”



On Theorems, Lemmas and Corollaries

We typically refer to: 

 A major result as a “theorem”

 An intermediate result that we show to prove a larger result as a 

“lemma”

 A result that follows from an already proven result as a 

“corollary”
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An example:

Theorem: The height of an n-node binary 

tree is at least floor(lg n)

Lemma: Level i of a perfect binary tree has 

2i nodes.

Corollary: A perfect binary tree of height h 

has 2h+1-1 nodes.
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Quantifiers

“For all” or “For every”
 Universal proofs

 Notation=

“There exists”
 Used in existential proofs

 Notation=

Implication is denoted by =>
 E.g., “IF A THEN B” can also be written as “A=>B” 
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Proving techniques

 By contradiction

 Start with the statement contradictory to the given 
statement

 E.g., To prove (A => B), we start with:
 (A and ~B)

 … and then show that could never happen

What if you want to prove that “(A and B => C or D)”?

 By induction

 (3 steps) Basis, inductive hypothesis, inductive step

 By contrapositive statement

 If A then B ≡ If ~B then ~A
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Proving techniques…

 By counter-example

 Show an example that disproves the claim

 Note: There is no such thing called a 
“proof by example”! 

 So when asked to prove a claim, an example that 
satisfied that claim is not a proof 
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Different ways of saying the same 

thing 

 “If H then C”:

i. H implies C

ii. H => C

iii. C if H

iv. H only if C

v. Whenever H holds, C follows
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“If-and-Only-If” statements

 “A if and only if B”  (A <==> B)
 (if part) if B then A  ( <= )

 (only if part) A only if B ( => )
(same as “if A then B”)

 “If and only if” is abbreviated as “iff”
 i.e., “A iff B”

 Example:
 Theorem: Let x be a real number. Then floor of x = 

ceiling of x if and only if x is an integer.

 Proofs for iff have two parts 
 One for the “if part” & another for the “only if part”



NFA to DFA conversion

and

regular expressions

25/2
2



DFAsandNFAsareequallypowerful

NFA can do everything a DFA can do  

How about the other way?

Every NFA is equivalent to some DFA for 
the same language

26/2
2
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NFA → DFA 

algorithm

GivenanNFA,figureout

1. the initial activestates

2. howthesetofactivestateschangesuponreadinganinputsymbol



NFA → DFA 

example

NFA:  q0 q1 q2
ε,1

0

ε

4/22

0

Initial active states (before reading any 
input)?



NFA → DFA 

example

NFA:  q0 q1 q2
ε,1

0

ε

0

Initial active states (before reading any 
input)?

partia

l  

DFA:
{q0,q1,q2}

Howdoesthesetofactivestateschange?

4/22
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NFA → DFA 

example

NFA:  q0 q1 q2
ε,1

0

ε
0

Initial active states (before reading any input)?

0

partia

l  

DFA:
{q0,q1,q2}

Howdoesthesetofactivestateschange?



NFA → DFA 

example

NFA:  q0 q1 q2
ε,1

0

ε
0

Initial active states (before reading any input)?

0

partia

l  

DFA:
{q0,q1,q2} {q1,q2}

1

Howdoesthesetofactivestateschange?

4/22



NFA → DFA 

example

NFA:  q0 q1 q2
ε,1

0

ε

0

Initial active states (before reading any 
input)?

partial  

DFA: {q0,q1,q2}

0

{q1,q2}
1

∅
0

1

Howdoesthesetofactivestateschange?

4/22

0,1



NFA → DFA 

summary

DFA:  
{q0,q1,q2}

0

{q1,q2}
1

∅
1

0

Every DFA state corresponds to a subset of NFA 
states

A DFA state is accepting if it contains an accepting 
NFA state

5/22

0,1
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Regularexpressions
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s

Powerful string matching feature in advanced editors (e.g. Vim, 

Emacs) and  modern programming languages (e.g. PERL, 

Python)

PERL regex examples:

colou?r matches “color”/“colour”

[A-Za-z]*ing matches any word ending in “ing”

We will learn to parse complicated regex recursively  by building 

up from simpler ones

Also construct the language matched by the expression 
recursively

Will focus on regular expressions in formal language theory  

(notations differ from PERL/Python/POSIX regex)
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s = abb

t = bab

s = x1 . . . xn,

8/22

st = abbbab

ts = bababb

ss = abbabb

sst =
abbabbbab

t = y1 . . . ym⇓
st = x1 . . . n 1x y . . .

y
m



onlanguages

► Concantenation of languages L1 and L2

L1L2 = {st : s ∈ L1, t ∈ L2}

► n-th power of language L

Ln = {s1s2 . . . sn | s1, s2, . . . , sn ∈ L}

► Union of L1 and L2

L1 ∪ L2 = {s | s ∈ L1 or s ∈ L2}

9/22
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L1 = {0,01} L2 = {ε,1,11,111, . . . }

10/22

L1L2 = {0, 01, 011, 0111, . . . } ∪ {01, 011, 0111, 

01111, . . . }

= {0, 01, 011, 0111, . . . }

0 followed by any number of 1s

2
1L = {00 ,001, 010, 0101} L2 = L22

n
2 2L = L foranyn “ 1

L1 ∪ L2 = {0, 01, ε, 1, 11, 111, . 

. . }



Operations onlanguages

The star of L are contains strings made up of zero or more 

chunks from L

L∗ = L0 ∪ L1 ∪ L2 ∪ . . .

Example: L1 = {0, 01} and L2 = {ε, 1, 11, 111, . . . }
What is L1

∗? L2
∗?

11/22
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L1 = {0,01}

12/22

0
1L = {ε}
1
1L = {0 ,01}
2
1L = {00 ,001, 010, 0101}
3
1L = {000 , 0001,0010,00101,0100,01001,01010,

010101}
Which of the following are in 

L1
∗?00100001 00110001 10010001
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L1 = {0,01}

12/22

0
1L = {ε}
1
1L = {0 ,01}
2
1L = {00 ,001, 010, 0101}
3
1L = {000 , 0001,0010,00101,0100,01001,01010,

010101}
Which of the following are in 

L1
∗?00100001

Yes

00110001

No

10010001

No
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L1 = {0,01}

0
1L = {ε}
1
1L = {0 ,01}
2
1L = {00 ,001, 010, 0101}
3
1L = {000 , 0001,0010,00101,0100,01001,01010,

010101}
Which of the following are in 

L1
∗?00100001

Yes

00110001

No

10010001

No

L1
∗ contains all strings such that any 1 is 

preceded by a 0

12/22



Example

L2 = {ε,1,11,111, . . . }
any number of1s

13/22

0
2L = {ε}

2L
1 = L2

L2 = L22
n
2 2L = L (n “

1)
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L2 = {ε,1,11,111, . . . }
any number of1s

0
2L = {ε}

2L
1 = L2

L2 = L22
n
2 2L = L (n “

1)

∗
2

0 1 2
2 2 2L = L ∪ L ∪ L ∪ . . .

= {ε} ∪ L2 ∪ L2 ∪ . 

. .= L2

2

13/22

L∗ = L2
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languages

We can construct languages by starting with simple ones, like 

{0} and {1},  and combining them

{0}({0} ∪
{1})∗

⇒ 0(0 + 

1)∗ all stringsthatstartwith0
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languages

We can construct languages by starting with simple ones, like 

{0} and {1},  and combining them

{0}({0} ∪
{1})∗

⇒ 0(0 + 1)∗

all strings that start with 0

({0}{1}∗) ∪
({1}{0}∗)

⇒ 01∗ + 10∗

0 followed by any number of 1s, or  

1 followed by any number of 0s
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languages

We can construct languages by starting with simple ones, like 

{0} and {1},  and combining them

{0}({0} ∪
{1})∗

⇒ 0(0 + 1)∗

all strings that start with 0

({0}{1}∗) ∪
({1}{0}∗)

⇒ 01∗ + 10∗

0 followed by any number of 1s, or  

1 followed by any number of 0s

0(0 + 1)∗ and 01∗ + 10∗ are regular 

expressions  Blueprints for combining simpler 

languages into complex ones



expressions

A regular expression over Σ is an expression formed by the 

following rules

►The symbols ∅ and ε are regular expressions

►Every symbol a in Σ is a regular expression

►If R asd S are regular expressions, so are R + S , RS and R∗

Examples:
∅

0(0 + 
1)∗

01∗ + 
10∗

ε

1∗(ε + 0)

(0 + 1)∗01(0 + 
1)∗

Alanguageis regular if it is representedbyaregular
expression

15/22
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regularexpressions

Σ = {0, 1}

01∗ = 0(1)∗ represents {0, 01, 011, 0111, 

. . . }  0 followed by any number of 1s

01∗ is not (01)∗
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regularexpressions

0 + 1 yields {0, 1}

(0 + 1)∗ yields {ε, 0, 1, 00, 01, 10, 

11, . . . }

(0 + 1)∗010

stringsof length1

anystring

anystringthatendsin010

(0 + 1)∗01(0 + 
1)∗

anystringcontaining01
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Understanding regularexpressions

What language does the following 
represent?

((0 + 1)(0 + 1))∗ + ((0 + 1)(0 + 1)(0 

+ 1))∗
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regularexpressions

What language does the following 
represent?

((0 + 1)(0 + 1))∗ + ((0 + 1)(0 + 1)(0 

+ 1))∗

((0 + 1)(0 + 
1))∗

((0 + 1)(0 + 1)(0 + 
1))∗
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regularexpressions

What language does the following 
represent?

((0 + 1)(0 + 1))∗ + ((0 + 1)(0 + 1)(0 

+ 1))∗

((0 + 1)(0 + 
1))∗

(0+ 1)(0 +
1)

((0 + 1)(0 + 1)(0 + 
1))∗

(0+ 1)(0 + 1)(0 +
1)



(0+ 1)(0+ 1)
stringsof length2

(0+ 1)(0 + 1)(0 +
1)

stringsof length3
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regularexpressions

What language does the following 
represent?

((0 + 1)(0 + 1))∗ + ((0 + 1)(0 + 1)(0 

+ 1))∗

((0 + 1)(0 + 
1))∗

((0 + 1)(0 + 1)(0 + 
1))∗
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regularexpressions

What language does the following 
represent?

((0 + 1)(0 + 1))∗ + ((0 + 1)(0 + 1)(0 

+ 1))∗

((0 + 1)(0 + 
1))∗

strings of even 
length

((0 + 1)(0 + 1)(0 + 
1))∗

strings whose length is 

a  multiple of 3
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regularexpressions

What language does the following 
represent?

((0 + 1)(0 + 1))∗ + ((0 + 1)(0 + 
1)(0 + 1))∗

strings whose length is even or a 

multiple of 3
=     strings of length 0, 2, 3, 4, 6, 8, 9, 

10, 12, . . .

((0 + 1)(0 + 
1))∗

strings of even 
length

(0+ 1)(0+ 1)
stringsof length2

((0 + 1)(0 + 1)(0 + 
1))∗

strings whose length is 

a  multiple of 3

(0+ 1)(0 + 1)(0 +
1)

stringsof length3
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Understanding regularexpressions

What language does the following 
represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 

+ 1))∗
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Understanding regularexpressions

What language does the following 
represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 
1))∗

(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 
1)
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regularexpressions

What language does the following 
represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 
1))∗

(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 
1)(0+ 1)(0+

1)
(0+ 1)(0+ 1)(0 +
1)
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regularexpressions

What language does the following 
represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 
1))∗

(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 
1)(0+ 1)(0+ 1)

stringsof length2

(0+ 1)(0 + 1)(0 +
1)

stringsof length3
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regularexpressions

What language does the following 
represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 
1))∗

(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 
1)

strings of length 2 or 3
(0+ 1)(0+ 1)

stringsof length2

(0+ 1)(0 + 1)(0 +
1)

stringsof length3
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regularexpressions

What language does the following represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))∗

strings that can be broken into blocks, where each block has 

length 2 or 3

(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)
strings of length 2 or 3

(0+ 1)(0+ 1)
stringsof length2

(0+ 1)(0 + 1)(0 +
1)

stringsof length3
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regularexpressions

What language does the following represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))∗

strings that can be broken into blocks, where each block has 

length 2 or 3
Which are in the 

language?  01 011ε 1 00110 011010110



regularexpressions

What language does the following represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))∗

strings that can be broken into blocks, where each block has 

length 2 or 3
Which are in the 

language?  01 011

✓ ✓
ε

✓
1

(
0011
0✓

01101011
0 ✓

Theregularexpressionrepresentsall stringsexcept0and1

20/22
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Understanding regularexpressions

What language does the following 
represent?

(1 + 01 + 001)∗ (ε + 0 + 00)



Understanding regularexpressions

endsinatmosttwo0s

What language does the following 
represent?

(1 + 01 + 001)∗
¸
(ε + 

x
0
s
+ 00

˛
)

21/22



regularexpressions

Whatlanguagedoesthefollowingrepresent?
endsinatmosttwo0s

s ˛¸

x

(1 + 01 + 001)∗
¸
(ε + x

0
s
+ 00

˛
)atmosttwo0sbetweentwoconsecutive1s

Never three consecutive0s

Theregularexpressionrepresentsstringsnotcontaining000

ε 00

Examples:

0110010110 0010010

21/22
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expressions

Writearegularexpressionforall stringswith twoconsecutive0s



Writing regularexpressions

Write a regular expression for all strings with two 
consecutive 0s

(anything)00(anything)

(0 + 1)∗00(0 + 1)∗

22/22


