
1

Introduction to Automata

Theory

Reading: Chapter 1

2

What is Automata Theory?

 Study of abstract computing devices, or
“machines”

 Automaton = an abstract computing device
 Note: A “device” need not even be a physical

hardware!

 A fundamental question in computer science:
 Find out what different models of machines can do

and cannot do

 The theory of computation

 Computability vs. Complexity

3

Alan Turing (1912-1954)

 Father of Modern Computer
Science

 English mathematician

 Studied abstract machines called
Turing machines even before
computers existed

 Heard of the Turing test?

(A pioneer of automata theory)

4

Theory of Computation: A

Historical Perspective

1930s • Alan Turing studies Turing machines

• Decidability

• Halting problem

1940-1950s • “Finite automata” machines studied

• Noam Chomsky proposes the

“Chomsky Hierarchy” for formal

languages

1969 Cook introduces “intractable” problems

or “NP-Hard” problems

1970- Modern computer science: compilers,

computational & complexity theory evolve

5

Languages & Grammars

Or “words”

Image source: Nowak et al. Nature, vol 417, 2002

 Languages: “A language is a
collection of sentences of
finite length all constructed
from a finite alphabet of
symbols”

 Grammars: “A grammar can
be regarded as a device that
enumerates the sentences of
a language” - nothing more,
nothing less

 N. Chomsky, Information
and Control, Vol 2, 1959

6

The Chomsky Hierachy

Regular

(DFA)
Context-

free

(PDA)

Context-

sensitive

(LBA)

Recursively-

enumerable

(TM)

• A containment hierarchy of classes of formal languages

7

The Central Concepts of

Automata Theory

8

Alphabet

An alphabet is a finite, non-empty set of
symbols

 We use the symbol ∑ (sigma) to denote an
alphabet

 Examples:
 Binary: ∑ = {0,1}

 All lower case letters: ∑ = {a,b,c,..z}

 Alphanumeric: ∑ = {a-z, A-Z, 0-9}

 DNA molecule letters: ∑ = {a,c,g,t}

 …

9

Strings

A string or word is a finite sequence of symbols
chosen from ∑

 Empty string is  (or “epsilon”)

 Length of a string w, denoted by “|w|”, is
equal to the number of (non- ) characters in the
string
 E.g., x = 010100 |x| = 6

 x = 01  0  1  00  |x| = ?

 xy = concatentation of two strings x and y

10

Powers of an alphabet

Let ∑ be an alphabet.

 ∑k = the set of all strings of length k

 ∑* = ∑0 U ∑1 U ∑2 U …

 ∑+ = ∑1 U ∑2 U ∑3 U …

11

Languages

L is a said to be a language over alphabet ∑, only if L  ∑*

 this is because ∑* is the set of all strings (of all possible
length including 0) over the given alphabet ∑

Examples:

1. Let L be the language of all strings consisting of n 0’s
followed by n 1’s:

L = {, 01, 0011, 000111,…}

2. Let L be the language of all strings of with equal number of
0’s and 1’s:

L = {, 01, 10, 0011, 1100, 0101, 1010, 1001,…}

Definition: Ø denotes the Empty language

 Let L = {}; Is L=Ø? NO

Canonical ordering of strings in the language

12

The Membership Problem

Given a string w ∑*and a language L

over ∑, decide whether or not w L.

Example:

Let w = 100011

Q) Is w  the language of strings with

equal number of 0s and 1s?

13

Finite Automata

 Some Applications
 Software for designing and checking the behavior

of digital circuits

 Lexical analyzer of a typical compiler

 Software for scanning large bodies of text (e.g.,
web pages) for pattern finding

 Software for verifying systems of all types that
have a finite number of states (e.g., stock market
transaction, communication/network protocol)

14

Finite Automata : Examples

 On/Off switch

 Modeling recognition of the word “then”

Start state Final stateTransition Intermediate

state

action

state

15

Structural expressions

 Grammars

 Regular expressions

 E.g., unix style to capture city names such

as “Palo Alto CA”:

 [A-Z][a-z]*([][A-Z][a-z]*)*[][A-Z][A-Z]

Start with a letter

A string of other

letters (possibly

empty)

Other space delimited words

(part of city name)

Should end w/ 2-letter state code

16

Formal Proofs

17

Deductive Proofs

From the given statement(s) to a conclusion

statement (what we want to prove)

 Logical progression by direct implications

Example for parsing a statement:

 “If y≥4, then 2y≥y2.”

(there are other ways of writing this).

given conclusion

18

Example: Deductive proof

Let Claim 1: If y≥4, then 2y≥y2.

Let x be any number which is obtained by adding the squares

of 4 positive integers.

Claim 2:

Given x and assuming that Claim 1 is true, prove that 2x≥x2

 Proof:

1) Given: x = a2 + b2 + c2 + d2

2) Given: a≥1, b≥1, c≥1, d≥1

3)  a2≥1, b2≥1, c2≥1, d2≥1 (by 2)

4)  x ≥ 4 (by 1 & 3)

5)  2x ≥ x2 (by 4 and Claim 1)

“implies” or “follows”

On Theorems, Lemmas and Corollaries

We typically refer to:

 A major result as a “theorem”

 An intermediate result that we show to prove a larger result as a

“lemma”

 A result that follows from an already proven result as a

“corollary”

19

An example:

Theorem: The height of an n-node binary

tree is at least floor(lg n)

Lemma: Level i of a perfect binary tree has

2i nodes.

Corollary: A perfect binary tree of height h

has 2h+1-1 nodes.

20

Quantifiers

“For all” or “For every”
 Universal proofs

 Notation=

“There exists”
 Used in existential proofs

 Notation=

Implication is denoted by =>
 E.g., “IF A THEN B” can also be written as “A=>B”

21

Proving techniques

 By contradiction

 Start with the statement contradictory to the given
statement

 E.g., To prove (A => B), we start with:
 (A and ~B)

 … and then show that could never happen

What if you want to prove that “(A and B => C or D)”?

 By induction

 (3 steps) Basis, inductive hypothesis, inductive step

 By contrapositive statement

 If A then B ≡ If ~B then ~A

22

Proving techniques…

 By counter-example

 Show an example that disproves the claim

 Note: There is no such thing called a
“proof by example”!

 So when asked to prove a claim, an example that
satisfied that claim is not a proof

23

Different ways of saying the same

thing

 “If H then C”:

i. H implies C

ii. H => C

iii. C if H

iv. H only if C

v. Whenever H holds, C follows

24

“If-and-Only-If” statements

 “A if and only if B” (A <==> B)
 (if part) if B then A (<=)

 (only if part) A only if B (=>)
(same as “if A then B”)

 “If and only if” is abbreviated as “iff”
 i.e., “A iff B”

 Example:
 Theorem: Let x be a real number. Then floor of x =

ceiling of x if and only if x is an integer.

 Proofs for iff have two parts
 One for the “if part” & another for the “only if part”

NFA to DFA conversion

and

regular expressions

25/2
2

DFAsandNFAsareequallypowerful

NFA can do everything a DFA can do

How about the other way?

Every NFA is equivalent to some DFA for
the same language

26/2
2

27/2
2

NFA → DFA

algorithm

GivenanNFA,figureout

1. the initial activestates

2. howthesetofactivestateschangesuponreadinganinputsymbol

NFA → DFA

example

NFA: q0 q1 q2
ε,1

0

ε

4/22

0

Initial active states (before reading any
input)?

NFA → DFA

example

NFA: q0 q1 q2
ε,1

0

ε

0

Initial active states (before reading any
input)?

partia

l

DFA:
{q0,q1,q2}

Howdoesthesetofactivestateschange?

4/22

4/22

NFA → DFA

example

NFA: q0 q1 q2
ε,1

0

ε
0

Initial active states (before reading any input)?

0

partia

l

DFA:
{q0,q1,q2}

Howdoesthesetofactivestateschange?

NFA → DFA

example

NFA: q0 q1 q2
ε,1

0

ε
0

Initial active states (before reading any input)?

0

partia

l

DFA:
{q0,q1,q2} {q1,q2}

1

Howdoesthesetofactivestateschange?

4/22

NFA → DFA

example

NFA: q0 q1 q2
ε,1

0

ε

0

Initial active states (before reading any
input)?

partial

DFA: {q0,q1,q2}

0

{q1,q2}
1

∅
0

1

Howdoesthesetofactivestateschange?

4/22

0,1

NFA → DFA

summary

DFA:
{q0,q1,q2}

0

{q1,q2}
1

∅
1

0

Every DFA state corresponds to a subset of NFA
states

A DFA state is accepting if it contains an accepting
NFA state

5/22

0,1

6/22

Regularexpressions

7/22

s

Powerful string matching feature in advanced editors (e.g. Vim,

Emacs) and modern programming languages (e.g. PERL,

Python)

PERL regex examples:

colou?r matches “color”/“colour”

[A-Za-z]*ing matches any word ending in “ing”

We will learn to parse complicated regex recursively by building

up from simpler ones

Also construct the language matched by the expression
recursively

Will focus on regular expressions in formal language theory

(notations differ from PERL/Python/POSIX regex)

on

s = abb

t = bab

s = x1 . . . xn,

8/22

st = abbbab

ts = bababb

ss = abbabb

sst =
abbabbbab

t = y1 . . . ym⇓
st = x1 . . . n 1x y . . .

y
m

onlanguages

► Concantenation of languages L1 and L2

L1L2 = {st : s ∈ L1, t ∈ L2}

► n-th power of language L

Ln = {s1s2 . . . sn | s1, s2, . . . , sn ∈ L}

► Union of L1 and L2

L1 ∪ L2 = {s | s ∈ L1 or s ∈ L2}

9/22

e

L1 = {0,01} L2 = {ε,1,11,111, . . . }

10/22

L1L2 = {0, 01, 011, 0111, . . . } ∪ {01, 011, 0111,

01111, . . . }

= {0, 01, 011, 0111, . . . }

0 followed by any number of 1s

2
1L = {00 ,001, 010, 0101} L2 = L22

n
2 2L = L foranyn “ 1

L1 ∪ L2 = {0, 01, ε, 1, 11, 111, .

. . }

Operations onlanguages

The star of L are contains strings made up of zero or more

chunks from L

L∗ = L0 ∪ L1 ∪ L2 ∪ . . .

Example: L1 = {0, 01} and L2 = {ε, 1, 11, 111, . . . }
What is L1

∗? L2
∗?

11/22

e

L1 = {0,01}

12/22

0
1L = {ε}
1
1L = {0 ,01}
2
1L = {00 ,001, 010, 0101}
3
1L = {000 , 0001,0010,00101,0100,01001,01010,

010101}
Which of the following are in

L1
∗?00100001 00110001 10010001

e

L1 = {0,01}

12/22

0
1L = {ε}
1
1L = {0 ,01}
2
1L = {00 ,001, 010, 0101}
3
1L = {000 , 0001,0010,00101,0100,01001,01010,

010101}
Which of the following are in

L1
∗?00100001

Yes

00110001

No

10010001

No

e

L1 = {0,01}

0
1L = {ε}
1
1L = {0 ,01}
2
1L = {00 ,001, 010, 0101}
3
1L = {000 , 0001,0010,00101,0100,01001,01010,

010101}
Which of the following are in

L1
∗?00100001

Yes

00110001

No

10010001

No

L1
∗ contains all strings such that any 1 is

preceded by a 0

12/22

Example

L2 = {ε,1,11,111, . . . }
any number of1s

13/22

0
2L = {ε}

2L
1 = L2

L2 = L22
n
2 2L = L (n “

1)

e

L2 = {ε,1,11,111, . . . }
any number of1s

0
2L = {ε}

2L
1 = L2

L2 = L22
n
2 2L = L (n “

1)

∗
2

0 1 2
2 2 2L = L ∪ L ∪ L ∪ . . .

= {ε} ∪ L2 ∪ L2 ∪ .

. .= L2

2

13/22

L∗ = L2

14/22

languages

We can construct languages by starting with simple ones, like

{0} and {1}, and combining them

{0}({0} ∪
{1})∗

⇒ 0(0 +

1)∗ all stringsthatstartwith0

14/22

languages

We can construct languages by starting with simple ones, like

{0} and {1}, and combining them

{0}({0} ∪
{1})∗

⇒ 0(0 + 1)∗

all strings that start with 0

({0}{1}∗) ∪
({1}{0}∗)

⇒ 01∗ + 10∗

0 followed by any number of 1s, or

1 followed by any number of 0s

14/22

languages

We can construct languages by starting with simple ones, like

{0} and {1}, and combining them

{0}({0} ∪
{1})∗

⇒ 0(0 + 1)∗

all strings that start with 0

({0}{1}∗) ∪
({1}{0}∗)

⇒ 01∗ + 10∗

0 followed by any number of 1s, or

1 followed by any number of 0s

0(0 + 1)∗ and 01∗ + 10∗ are regular

expressions Blueprints for combining simpler

languages into complex ones

expressions

A regular expression over Σ is an expression formed by the

following rules

►The symbols ∅ and ε are regular expressions

►Every symbol a in Σ is a regular expression

►If R asd S are regular expressions, so are R + S , RS and R∗

Examples:
∅

0(0 +
1)∗

01∗ +
10∗

ε

1∗(ε + 0)

(0 + 1)∗01(0 +
1)∗

Alanguageis regular if it is representedbyaregular
expression

15/22

16/22

regularexpressions

Σ = {0, 1}

01∗ = 0(1)∗ represents {0, 01, 011, 0111,

. . . } 0 followed by any number of 1s

01∗ is not (01)∗

17/22

regularexpressions

0 + 1 yields {0, 1}

(0 + 1)∗ yields {ε, 0, 1, 00, 01, 10,

11, . . . }

(0 + 1)∗010

stringsof length1

anystring

anystringthatendsin010

(0 + 1)∗01(0 +
1)∗

anystringcontaining01

18/22

Understanding regularexpressions

What language does the following
represent?

((0 + 1)(0 + 1))∗ + ((0 + 1)(0 + 1)(0

+ 1))∗

18/22

regularexpressions

What language does the following
represent?

((0 + 1)(0 + 1))∗ + ((0 + 1)(0 + 1)(0

+ 1))∗

((0 + 1)(0 +
1))∗

((0 + 1)(0 + 1)(0 +
1))∗

18/22

regularexpressions

What language does the following
represent?

((0 + 1)(0 + 1))∗ + ((0 + 1)(0 + 1)(0

+ 1))∗

((0 + 1)(0 +
1))∗

(0+ 1)(0 +
1)

((0 + 1)(0 + 1)(0 +
1))∗

(0+ 1)(0 + 1)(0 +
1)

(0+ 1)(0+ 1)
stringsof length2

(0+ 1)(0 + 1)(0 +
1)

stringsof length3

18/22

regularexpressions

What language does the following
represent?

((0 + 1)(0 + 1))∗ + ((0 + 1)(0 + 1)(0

+ 1))∗

((0 + 1)(0 +
1))∗

((0 + 1)(0 + 1)(0 +
1))∗

(0+ 1)(0+ 1)
stringsof length2

(0+ 1)(0 + 1)(0 +
1)

stringsof length3

18/22

regularexpressions

What language does the following
represent?

((0 + 1)(0 + 1))∗ + ((0 + 1)(0 + 1)(0

+ 1))∗

((0 + 1)(0 +
1))∗

strings of even
length

((0 + 1)(0 + 1)(0 +
1))∗

strings whose length is

a multiple of 3

18/22

regularexpressions

What language does the following
represent?

((0 + 1)(0 + 1))∗ + ((0 + 1)(0 +
1)(0 + 1))∗

strings whose length is even or a

multiple of 3
= strings of length 0, 2, 3, 4, 6, 8, 9,

10, 12, . . .

((0 + 1)(0 +
1))∗

strings of even
length

(0+ 1)(0+ 1)
stringsof length2

((0 + 1)(0 + 1)(0 +
1))∗

strings whose length is

a multiple of 3

(0+ 1)(0 + 1)(0 +
1)

stringsof length3

19/22

Understanding regularexpressions

What language does the following
represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0

+ 1))∗

19/22

Understanding regularexpressions

What language does the following
represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 +
1))∗

(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 +
1)

19/22

regularexpressions

What language does the following
represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 +
1))∗

(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 +
1)(0+ 1)(0+

1)
(0+ 1)(0+ 1)(0 +
1)

19/22

regularexpressions

What language does the following
represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 +
1))∗

(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 +
1)(0+ 1)(0+ 1)

stringsof length2

(0+ 1)(0 + 1)(0 +
1)

stringsof length3

19/22

regularexpressions

What language does the following
represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 +
1))∗

(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 +
1)

strings of length 2 or 3
(0+ 1)(0+ 1)

stringsof length2

(0+ 1)(0 + 1)(0 +
1)

stringsof length3

19/22

regularexpressions

What language does the following represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))∗

strings that can be broken into blocks, where each block has

length 2 or 3

(0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1)
strings of length 2 or 3

(0+ 1)(0+ 1)
stringsof length2

(0+ 1)(0 + 1)(0 +
1)

stringsof length3

20/22

regularexpressions

What language does the following represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))∗

strings that can be broken into blocks, where each block has

length 2 or 3
Which are in the

language? 01 011ε 1 00110 011010110

regularexpressions

What language does the following represent?

((0 + 1)(0 + 1) + (0 + 1)(0 + 1)(0 + 1))∗

strings that can be broken into blocks, where each block has

length 2 or 3
Which are in the

language? 01 011

✓ ✓
ε

✓
1

(
0011
0✓

01101011
0 ✓

Theregularexpressionrepresentsall stringsexcept0and1

20/22

21/22

Understanding regularexpressions

What language does the following
represent?

(1 + 01 + 001)∗ (ε + 0 + 00)

Understanding regularexpressions

endsinatmosttwo0s

What language does the following
represent?

(1 + 01 + 001)∗
¸
(ε +

x
0
s
+ 00

˛
)

21/22

regularexpressions

Whatlanguagedoesthefollowingrepresent?
endsinatmosttwo0s

s ˛¸

x

(1 + 01 + 001)∗
¸
(ε + x

0
s
+ 00

˛
)atmosttwo0sbetweentwoconsecutive1s

Never three consecutive0s

Theregularexpressionrepresentsstringsnotcontaining000

ε 00

Examples:

0110010110 0010010

21/22

22/22

expressions

Writearegularexpressionforall stringswith twoconsecutive0s

Writing regularexpressions

Write a regular expression for all strings with two
consecutive 0s

(anything)00(anything)

(0 + 1)∗00(0 + 1)∗

22/22

