
Chapter 8

Code Generation

By Varun Arora



Outline
 Code Generation Issues

 Target language Issues

 Addresses in Target Code

 Basic Blocks and Flow Graphs

 Optimizations of Basic Blocks

 A Simple Code Generator

 Peephole optimization

 Register allocation and assignment

 Instruction selection by tree rewriting

By Varun Arora



Introduction
 The final phase of a compiler is code generator
 It receives an intermediate representation (IR) with 

supplementary information in symbol table
 Produces a semantically equivalent target program
 Code generator main tasks:

 Instruction selection
 Register allocation and assignment
 Insrtuction ordering

Front 
end

Code optimizer
Code 

Generator
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Issues in the Design of Code 
Generator
 The most important criterion is that it produces correct 

code
 Input to the code generator

 IR + Symbol table
 We assume front end produces low-level IR, i.e. values of 

names in it can be directly manipulated by the machine 
instructions.

 Syntactic and semantic errors have been already detected

 The target program
 Common target architectures are: RISC, CISC and Stack 

based machines
 In this chapter we use a very simple RISC-like computer with 

addition of some CISC-like addressing modes
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complexity of mapping
 the level of the IR

 the nature of the instruction-set architecture

 the desired quality of the generated code.

x=y+z

LD R0, y

ADD R0, R0, z

ST x, R0

a=b+c

d=a+e

LD R0, b

ADD R0, R0, c

ST a, R0

LD R0, a

ADD R0, R0, e

ST d, R0
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Register allocation
 Two subproblems

 Register allocation: selecting the set of variables that will reside in 
registers at each point in the program

 Resister assignment: selecting specific register that a variable reside 
in

 Complications imposed by the hardware architecture

 Example: register pairs for multiplication and division

t=a+b

t=t*c

T=t/d

t=a+b

t=t+c

T=t/d

L R1, a 

A R1, b

M R0, c

D R0, d

ST R1, t

L R0, a 

A R0, b

M R0, c

SRDA R0, 32

D R0, d

ST R1, tBy Varun Arora



A simple target machine model
 Load operations: LD r,x and LD r1, r2

 Store operations: ST x,r

 Computation operations: OP dst, src1, src2

 Unconditional jumps: BR L

 Conditional jumps: Bcond r, L like BLTZ r, L
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Addressing Modes
 variable name: x

 indexed address: a(r) like LD R1, a(R2) means 

R1=contents(a+contents(R2))

 integer  indexed by a register : like LD R1, 100(R2)

 Indirect addressing mode: *r and *100(r)

 immediate constant addressing mode: like LD R1, #100
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b = a [i]
LD R1, i //R1 = i

MUL R1, R1, 8 //R1 = Rl * 8

LD R2, a(R1) 

//R2=contents(a+contents(R1))

ST b, R2 //b = R2
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a[j] = c
LD R1, c //R1 = c

LD R2, j // R2 = j

MUL R2, R2, 8 //R2 = R2 * 8

ST  a(R2), R1

//contents(a+contents(R2))=R1
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x=*p
LD R1, p //R1 = p

LD R2, 0(R1) // R2 = 

contents(0+contents(R1))

ST  x, R2 // x=R2
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conditional-jump three-address instruction

If x<y goto L

LD R1, x // R1 = x

LD R2, y // R2 = y

SUB R1, R1, R2 // R1 = R1 - R2

BLTZ R1, M // i f R1 < 0 jump t o M
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costs associated with the addressing modes

 LD R0, R1 cost = 1

 LD R0, M cost = 2

 LD R1, *100(R2) cost = 3
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Addresses in the Target Code

 A statically determined area Code

 A statically determined data area Static

 A dynamically managed area Heap

 A dynamically managed area Stack
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three-address statements for 
procedure calls and returns
 call callee

 Return

 Halt

 action
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Target program for a sample call and return
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Stack Allocation

Return to caller

in Callee: BR *0(SP)

in caller: SUB SP, SP, #caller.recordsize

Branch to called procedure
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Target code for stack allocation
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Basic blocks and flow graphs

 Partition the intermediate code into basic blocks

 The flow of control can only enter the basic block 
through the first instruction in the block. That is, there 
are no jumps into the middle of the block.

 Control will leave the block without halting or 
branching, except possibly at the last instruction in the 
block.

 The basic blocks become the nodes of a flow graph
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rules for finding leaders
 The first three-address instruction in the intermediate 

code is a leader.

 Any instruction that is the target of a conditional or 

unconditional jump is a leader.

 Any instruction that immediately follows a conditional 

or unconditional jump is a leader.
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Intermediate code to set a 10*10 matrix 
to an identity matrix
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Flow graph based on Basic Blocks
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liveness and next-use information
 We wish to determine for each three address statement  

x=y+z what the next uses of x, y and z are.

 Algorithm:

 Attach to statement i the information currently found in 

the symbol table regarding the next use and liveness of 

x, y, and z.

 In the symbol table, set x to "not live" and "no next use.“

 In the symbol table, set y and z to "live" and the next 

uses of y and z to i.
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DAG representation of basic 
blocks
 There is a node in the DAG for each of the initial 

values of the variables appearing in the basic block.

 There is a node N associated with each statement s 
within the block. The children of N are those nodes 
corresponding to statements that are the last 
definitions, prior to s, of the operands used by s.

 Node N is labeled by the operator applied at s, and also 
attached to N is the list of variables for which it is the 
last definition within the block.

 Certain nodes are designated output nodes. These are 
the nodes whose variables are live on exit from the 
block.
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Code improving transformations
 We can eliminate local common subexpressions, that 

is, instructions that compute a value that has already 
been computed.

 We can eliminate dead code, that is, instructions that 
compute a value that is never used.

 We can reorder statements that do not depend on one 
another; such reordering may reduce the time a 
temporary value needs to be preserved in a register.

 We can apply algebraic laws to reorder operands of 
three-address instructions, and sometimes t hereby 
simplify t he computation.
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DAG for basic block
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DAG for basic block
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array accesses in a DAG
 An assignment from an array, like x = a [i], is represented by 

creating a node with operator =[] and two children representing 
the initial value of the array, a0 in this case, and the index i. 
Variable x becomes a label of this new node.

 An assignment to an array, like a [j] = y, is represented by a new 
node with operator []= and three children representing a0, j and 
y. There is no variable labeling this node. What is different is that 
the creation of this node kills all currently constructed nodes 
whose value depends on a0. A node that has been killed cannot 
receive any more labels; that is, it cannot become a common 
subexpression.
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DAG for a sequence of array assignments
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Rules for reconstructing the basic block 
from a DAG
 The order of instructions must respect the order of nodes in the DAG. 

That is, we cannot compute a node's value until we have computed a 
value for each of its children.

 Assignments to an array must follow all previous assignments to, or 
evaluations from, the same array, according to the order of these 
instructions in the original basic block.

 Evaluations of array elements must follow any previous (according to 
the original block) assignments to the same array. The only 
permutation allowed is that two evaluations from the same array may 
be done in either order, as long as neither crosses over an assignment to 
that array.

 Any use of a variable must follow all previous (according to the original 
block) procedure calls or indirect assignments through a pointer.

 Any procedure call or indirect assignment through a pointer must 
follow all previous (according to the original block) evaluations of any 
variable.
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principal uses of registers
 In most machine architectures, some or all of the 

operands of an operation must be in registers in order 
to perform the operation.

 Registers make good temporaries - places to hold the 
result of a subexpression while a larger expression is 
being evaluated, or more generally, a place to hold a 
variable that is used only within a single basic block.

 Registers are often used to help with run-time storage 
management, for example, to manage the run-time 
stack, including the maintenance of stack pointers and 
possibly the top elements of the stack itself.
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Descriptors for data structure
 For each available register, a register descriptor keeps track of the 

variable names whose current value is in that register. Since we 
shall use only those registers that are available for local use 
within a basic block, we assume that initially, all register 
descriptors are empty. As the code generation progresses, each 
register will hold the value of zero or more names.

 For each program variable, an address descriptor keeps track of 
the location or locations where the current value of that variable 
can be found. The location might be a register, a memory 
address, a stack location, or some set of more than one of these. 
The information can be stored in the symbol-table entry for that 
variable name.
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Machine Instructions for Operations

 Use getReg(x = y + z) to select registers for x, y, and z. 
Call these Rx, Ry and Rz.

 If y is not in Ry (according to the register descriptor for 
Ry), then issue an instruction LD Ry, y', where y' is one 
of the memory locations for y (according to the 
address descriptor for y).

 Similarly, if z is not in Rz, issue and instruction LD Rz, 
z', where z' is a location for x .

 Issue the instruction ADD Rx , Ry, Rz.
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Rules for updating the register and address descriptors

 For the instruction LD R, x
 Change the register descriptor for register R so it holds only x.
 Change the address descriptor for x by adding register R as an 

additional location.
 For the instruction ST x, R, change the address descriptor for x to 

include its own memory location.
 For an operation such as ADD Rx, Ry, Rz implementing a three-

address instruction x = y + x
 Change the register descriptor for Rx so that it holds only x.
 Change the address descriptor for x so that its only location is Rx. 

Note that the memory location for x is not now in the address 
descriptor for x.

 Remove Rx from the address descriptor of any variable other than x.
 When we process a copy statement x = y, after generating the load 

for y into register Ry, if needed, and after managing descriptors as 
for all load statements (per rule I):
 Add x to the register descriptor for Ry.

 Change the address descriptor for x so that its only location is Ry .
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Instructions generated and the changes in the 
register and address descriptors
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Rules for picking register Ry for y
 If y is currently in a register, pick a register already 

containing y as Ry. Do not issue a machine instruction 
to load this register, as none is needed.

 If y is not in a register, but there is a register that is 
currently empty, pick one such register as Ry.

 The difficult case occurs when y is not in a register, and 
there is no register that is currently empty. We need to 
pick one of the allowable registers anyway, and we 
need to make it safe to reuse. 
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Possibilities for value of R
 If the address descriptor for v says that v is somewhere besides R, 

then we are OK.

 If v is x, the value being computed by instruction I, and x is not 
also one of the other operands of instruction I (z in this 
example), then we are OK. The reason is that in this case, we 
know this value of x is never again going to be used, so we are 
free to ignore it.

 Otherwise, if v is not used later (that is, after the instruction I, 
there are no further uses of v, and if v is live on exit from the 
block, then v is recomputed within the block), then we are OK.

 If we are not OK by one of the first two cases, then we need to 
generate the store instruction ST v, R to place a copy of v in its 
own memory location. This operation is called a spill.

By Varun Arora



Selection of the register Rx
1. Since a new value of x is being computed, a register 

that holds only x is always an acceptable choice for 
Rx.

2. If y is not used after instruction I, and Ry holds only y 
after being loaded, Ry can also be used as Rx. A 
similar option holds regarding z and Rx.
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Possibilities for value of R
 If the address descriptor for v says that v is somewhere besides R, 

then we are OK.

 If v is x, the value being computed by instruction I, and x is not 
also one of the other operands of instruction I (z in this 
example), then we are OK. The reason is that in this case, we 
know this value of x is never again going to be used, so we are 
free to ignore it.

 Otherwise, if v is not used later (that is, after the instruction I, 
there are no further uses of v, and if v is live on exit from the 
block, then v is recomputed within the block), then we are OK.

 If we are not OK by one of the first two cases, then we need to 
generate the store instruction ST v, R to place a copy of v in its 
own memory location. This operation is called a spill.
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Characteristic of peephole optimizations

 Redundant-instruction elimination

 Flow-of-control optimizations

 Algebraic simplifications

 Use of machine idioms
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Redundant-instruction elimination
 LD a, R0

ST R0, a

 if debug == 1 goto L1

goto L2

L I : print debugging information

L2:
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Flow-of-control optimizations
goto L1

...

Ll: goto L2

Can be replaced by:

goto L2

...

Ll: goto L2

if a<b goto L1

...

Ll: goto L2

Can be replaced by:

if a<b goto L2

...

Ll: goto L2
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Algebraic simplifications

 x=x+0

 x=x*1
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Register Allocation and Assignment

 Global Register Allocation

 Usage Counts

 Register Assignment for Outer Loops

 Register Allocation by Graph Coloring
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Global register allocation
 Previously explained algorithm does local (block based) 

register  allocation

 This resulted that all live variables be stored at the end of 
block

 To save some of these stores and their corresponding loads, 
we might arrange to assign registers to frequently used 
variables and keep these registers consistent across block 
boundaries (globally)

 Some options are:
 Keep values of variables used in loops inside registers

 Use graph coloring approach for more globally allocation
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Usage counts
 For the loops we can approximate the saving by 

register allocation as:

 Sum over all blocks (B) in a loop (L)

 For each uses of x before any definition in the block we 
add one unit of saving

 If x is live on exit from B and is assigned a value in B, 
then we ass 2 units of saving
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Flow graph of an inner loop
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Code sequence using global register 
assignment
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Register allocation by Graph 
coloring
 Two passes are used

 Target-machine instructions are selected as though 
there are an infinite number of symbolic registers

 Assign physical registers to symbolic ones

 Create a register-interference graph

 Nodes are symbolic registers and edges connects two nodes if 
one is live at a point where the other is defined.

 For example in the previous example an edge connects a and d 
in the graph

 Use a graph coloring algorithm to assign registers.
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Intermediate-code tree for a[i]=b+1
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Tree-rewriting rules
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Syntax-directed translation scheme
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An instruction set for tree matching
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Ershov Numbers
 Label any leaf 1.

 The label of an interior node with one child is the label 
of its child.

 The label of an interior node with two children is

 The larger of the labels of its children, if those labels are 
different.

 One plus the label of its children if the labels are the 
same.
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A tree labeled with Ershov numbers

By Varun Arora



Generating code from a labeled expression tree
 To generate machine code for an interior node with label k and two 

children with equal labels (which must be k - l) do the following:
 Recursively generate code for the right child, using base b+1. The result of 

the right child appears in register Rb+k.
 Recursively generate code for the left child, using base b; the result appears 

in Rb+k-1.
 Generate the instruction OP Rb+k, Rb+k-1, Rb+k, where OP is the appropriate 

operation for the interior node in question.

 Suppose we have an interior node with label k and children with unequal 
labels. Then one of the children, which we'll call the "big" child, has label k 
, and the other child, the "little" child, has some label m < k. Do the 
following to generate code for this interior node, using base b:
 Recursively generate code for the big child, using base b; the result appears 

in register Rb+k-l.
 Recursively generate code for the small child, using base b; the result 

appears in register Rb+m-l. Note that since m < k, neither Rb+k-l nor any 
higher-numbered register is used.

 Generate the instruction OP Rb+k-l, Rb+m-l, Rb+k-1 or the instruction OP Rb+k-l, 
Rb+k-l, Rb+m+l, depending on whether the big child is the right or left child, 
respectively.

 For a leaf representing operand x, if the base is b generate the instruction 
LD Rb, x.
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Optimal three-register code
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Evaluating Expressions with an 
Insufficient Supply of Registers
 Node N has at least one child with label r or greater. Pick the larger 

child (or either if their labels are the same) to be the "big" child and let 
the other child be the "little" child.

 Recursively generate code for the big child, using base b = 1. The result 
of this evaluation will appear in register Rr

 Generate the machine instruction ST tk, Rr, where tk is a temporary 
variable used for temporary results used to help evaluate nodes with 
label k.

 Generate code for the little child as follows. If the little child has label r 
or greater, pick base b=1. If the label of the little child is j<r, then pick 
b=r-j. Then recursively apply this algorithm to the little child; the result 
appears in Rr.

 Generate the instruction LD Rr-l, tk.

 If the big child is the right child of N, then generate the instruction OP 
Rr, Rr, Rr-1. If the big child is the left child, generate OP Rr, Rr-1, Rr.
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Optimal three-register code 
using only two registers
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Dynamic Programming Algorithm

 Compute bottom-up for each node n of the expression tree T an 
array C of costs, in which the ith component C[i] is the optimal 
cost of computing the subtree S rooted at n into a register, 
assuming i registers are available for the computation, for

 Traverse T, using the cost vectors to determine which subtrees of 
T must be computed into memory.

 Traverse each tree using the cost vectors and associated 
instructions to generate the final target code. The code for the 
subtrees computed into memory locations is generated first.

 ri 1
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Syntax tree for (a-b)+c*(d/e) with 
cost vector at each node
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minimum cost of evaluating the 
root with two registers available
 Compute the left subtree with two registers available into 

register R0, compute the right subtree with one register 
available into register R1, and use the instruction ADD R0, 
R0, R1 to compute the root. This sequence has cost 
2+5+1=8.

 Compute the right subtree with two registers available into 
R l , compute the left subtree with one register available 
into R0, and use the instruction ADD R0, R0, R1. This 
sequence has cost 4+2+1=7.

 Compute the right subtree into memory location M, 
compute the left subtree with two registers available into 
register RO, and use the instruction ADD R0, R0, M. This 
sequence has cost 5+2+1=8.
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