
Chapter 8

Code Generation

By Varun Arora

Outline
 Code Generation Issues

 Target language Issues

 Addresses in Target Code

 Basic Blocks and Flow Graphs

 Optimizations of Basic Blocks

 A Simple Code Generator

 Peephole optimization

 Register allocation and assignment

 Instruction selection by tree rewriting

By Varun Arora

Introduction
 The final phase of a compiler is code generator
 It receives an intermediate representation (IR) with

supplementary information in symbol table
 Produces a semantically equivalent target program
 Code generator main tasks:

 Instruction selection
 Register allocation and assignment
 Insrtuction ordering

Front
end

Code optimizer
Code

Generator

By Varun Arora

Issues in the Design of Code
Generator
 The most important criterion is that it produces correct

code
 Input to the code generator

 IR + Symbol table
 We assume front end produces low-level IR, i.e. values of

names in it can be directly manipulated by the machine
instructions.

 Syntactic and semantic errors have been already detected

 The target program
 Common target architectures are: RISC, CISC and Stack

based machines
 In this chapter we use a very simple RISC-like computer with

addition of some CISC-like addressing modes

By Varun Arora

complexity of mapping
 the level of the IR

 the nature of the instruction-set architecture

 the desired quality of the generated code.

x=y+z

LD R0, y

ADD R0, R0, z

ST x, R0

a=b+c

d=a+e

LD R0, b

ADD R0, R0, c

ST a, R0

LD R0, a

ADD R0, R0, e

ST d, R0
By Varun Arora

Register allocation
 Two subproblems

 Register allocation: selecting the set of variables that will reside in
registers at each point in the program

 Resister assignment: selecting specific register that a variable reside
in

 Complications imposed by the hardware architecture

 Example: register pairs for multiplication and division

t=a+b

t=t*c

T=t/d

t=a+b

t=t+c

T=t/d

L R1, a

A R1, b

M R0, c

D R0, d

ST R1, t

L R0, a

A R0, b

M R0, c

SRDA R0, 32

D R0, d

ST R1, tBy Varun Arora

A simple target machine model
 Load operations: LD r,x and LD r1, r2

 Store operations: ST x,r

 Computation operations: OP dst, src1, src2

 Unconditional jumps: BR L

 Conditional jumps: Bcond r, L like BLTZ r, L

By Varun Arora

Addressing Modes
 variable name: x

 indexed address: a(r) like LD R1, a(R2) means

R1=contents(a+contents(R2))

 integer indexed by a register : like LD R1, 100(R2)

 Indirect addressing mode: *r and *100(r)

 immediate constant addressing mode: like LD R1, #100

By Varun Arora

b = a [i]
LD R1, i //R1 = i

MUL R1, R1, 8 //R1 = Rl * 8

LD R2, a(R1)

//R2=contents(a+contents(R1))

ST b, R2 //b = R2

By Varun Arora

a[j] = c
LD R1, c //R1 = c

LD R2, j // R2 = j

MUL R2, R2, 8 //R2 = R2 * 8

ST a(R2), R1

//contents(a+contents(R2))=R1

By Varun Arora

x=*p
LD R1, p //R1 = p

LD R2, 0(R1) // R2 =

contents(0+contents(R1))

ST x, R2 // x=R2

By Varun Arora

conditional-jump three-address instruction

If x<y goto L

LD R1, x // R1 = x

LD R2, y // R2 = y

SUB R1, R1, R2 // R1 = R1 - R2

BLTZ R1, M // i f R1 < 0 jump t o M

By Varun Arora

costs associated with the addressing modes

 LD R0, R1 cost = 1

 LD R0, M cost = 2

 LD R1, *100(R2) cost = 3

By Varun Arora

Addresses in the Target Code

 A statically determined area Code

 A statically determined data area Static

 A dynamically managed area Heap

 A dynamically managed area Stack

By Varun Arora

three-address statements for
procedure calls and returns
 call callee

 Return

 Halt

 action

By Varun Arora

Target program for a sample call and return

By Varun Arora

Stack Allocation

Return to caller

in Callee: BR *0(SP)

in caller: SUB SP, SP, #caller.recordsize

Branch to called procedure

By Varun Arora

Target code for stack allocation

By Varun Arora

Basic blocks and flow graphs

 Partition the intermediate code into basic blocks

 The flow of control can only enter the basic block
through the first instruction in the block. That is, there
are no jumps into the middle of the block.

 Control will leave the block without halting or
branching, except possibly at the last instruction in the
block.

 The basic blocks become the nodes of a flow graph

By Varun Arora

rules for finding leaders
 The first three-address instruction in the intermediate

code is a leader.

 Any instruction that is the target of a conditional or

unconditional jump is a leader.

 Any instruction that immediately follows a conditional

or unconditional jump is a leader.

By Varun Arora

Intermediate code to set a 10*10 matrix
to an identity matrix

By Varun Arora

Flow graph based on Basic Blocks

By Varun Arora

liveness and next-use information
 We wish to determine for each three address statement

x=y+z what the next uses of x, y and z are.

 Algorithm:

 Attach to statement i the information currently found in

the symbol table regarding the next use and liveness of

x, y, and z.

 In the symbol table, set x to "not live" and "no next use.“

 In the symbol table, set y and z to "live" and the next

uses of y and z to i.

By Varun Arora

DAG representation of basic
blocks
 There is a node in the DAG for each of the initial

values of the variables appearing in the basic block.

 There is a node N associated with each statement s
within the block. The children of N are those nodes
corresponding to statements that are the last
definitions, prior to s, of the operands used by s.

 Node N is labeled by the operator applied at s, and also
attached to N is the list of variables for which it is the
last definition within the block.

 Certain nodes are designated output nodes. These are
the nodes whose variables are live on exit from the
block.

By Varun Arora

Code improving transformations
 We can eliminate local common subexpressions, that

is, instructions that compute a value that has already
been computed.

 We can eliminate dead code, that is, instructions that
compute a value that is never used.

 We can reorder statements that do not depend on one
another; such reordering may reduce the time a
temporary value needs to be preserved in a register.

 We can apply algebraic laws to reorder operands of
three-address instructions, and sometimes t hereby
simplify t he computation.

By Varun Arora

DAG for basic block

By Varun Arora

DAG for basic block

By Varun Arora

array accesses in a DAG
 An assignment from an array, like x = a [i], is represented by

creating a node with operator =[] and two children representing
the initial value of the array, a0 in this case, and the index i.
Variable x becomes a label of this new node.

 An assignment to an array, like a [j] = y, is represented by a new
node with operator []= and three children representing a0, j and
y. There is no variable labeling this node. What is different is that
the creation of this node kills all currently constructed nodes
whose value depends on a0. A node that has been killed cannot
receive any more labels; that is, it cannot become a common
subexpression.

By Varun Arora

DAG for a sequence of array assignments

By Varun Arora

Rules for reconstructing the basic block
from a DAG
 The order of instructions must respect the order of nodes in the DAG.

That is, we cannot compute a node's value until we have computed a
value for each of its children.

 Assignments to an array must follow all previous assignments to, or
evaluations from, the same array, according to the order of these
instructions in the original basic block.

 Evaluations of array elements must follow any previous (according to
the original block) assignments to the same array. The only
permutation allowed is that two evaluations from the same array may
be done in either order, as long as neither crosses over an assignment to
that array.

 Any use of a variable must follow all previous (according to the original
block) procedure calls or indirect assignments through a pointer.

 Any procedure call or indirect assignment through a pointer must
follow all previous (according to the original block) evaluations of any
variable.

By Varun Arora

principal uses of registers
 In most machine architectures, some or all of the

operands of an operation must be in registers in order
to perform the operation.

 Registers make good temporaries - places to hold the
result of a subexpression while a larger expression is
being evaluated, or more generally, a place to hold a
variable that is used only within a single basic block.

 Registers are often used to help with run-time storage
management, for example, to manage the run-time
stack, including the maintenance of stack pointers and
possibly the top elements of the stack itself.

By Varun Arora

Descriptors for data structure
 For each available register, a register descriptor keeps track of the

variable names whose current value is in that register. Since we
shall use only those registers that are available for local use
within a basic block, we assume that initially, all register
descriptors are empty. As the code generation progresses, each
register will hold the value of zero or more names.

 For each program variable, an address descriptor keeps track of
the location or locations where the current value of that variable
can be found. The location might be a register, a memory
address, a stack location, or some set of more than one of these.
The information can be stored in the symbol-table entry for that
variable name.

By Varun Arora

Machine Instructions for Operations

 Use getReg(x = y + z) to select registers for x, y, and z.
Call these Rx, Ry and Rz.

 If y is not in Ry (according to the register descriptor for
Ry), then issue an instruction LD Ry, y', where y' is one
of the memory locations for y (according to the
address descriptor for y).

 Similarly, if z is not in Rz, issue and instruction LD Rz,
z', where z' is a location for x .

 Issue the instruction ADD Rx , Ry, Rz.

By Varun Arora

Rules for updating the register and address descriptors

 For the instruction LD R, x
 Change the register descriptor for register R so it holds only x.
 Change the address descriptor for x by adding register R as an

additional location.
 For the instruction ST x, R, change the address descriptor for x to

include its own memory location.
 For an operation such as ADD Rx, Ry, Rz implementing a three-

address instruction x = y + x
 Change the register descriptor for Rx so that it holds only x.
 Change the address descriptor for x so that its only location is Rx.

Note that the memory location for x is not now in the address
descriptor for x.

 Remove Rx from the address descriptor of any variable other than x.
 When we process a copy statement x = y, after generating the load

for y into register Ry, if needed, and after managing descriptors as
for all load statements (per rule I):
 Add x to the register descriptor for Ry.

 Change the address descriptor for x so that its only location is Ry .
By Varun Arora

Instructions generated and the changes in the
register and address descriptors

By Varun Arora

Rules for picking register Ry for y
 If y is currently in a register, pick a register already

containing y as Ry. Do not issue a machine instruction
to load this register, as none is needed.

 If y is not in a register, but there is a register that is
currently empty, pick one such register as Ry.

 The difficult case occurs when y is not in a register, and
there is no register that is currently empty. We need to
pick one of the allowable registers anyway, and we
need to make it safe to reuse.

By Varun Arora

Possibilities for value of R
 If the address descriptor for v says that v is somewhere besides R,

then we are OK.

 If v is x, the value being computed by instruction I, and x is not
also one of the other operands of instruction I (z in this
example), then we are OK. The reason is that in this case, we
know this value of x is never again going to be used, so we are
free to ignore it.

 Otherwise, if v is not used later (that is, after the instruction I,
there are no further uses of v, and if v is live on exit from the
block, then v is recomputed within the block), then we are OK.

 If we are not OK by one of the first two cases, then we need to
generate the store instruction ST v, R to place a copy of v in its
own memory location. This operation is called a spill.

By Varun Arora

Selection of the register Rx
1. Since a new value of x is being computed, a register

that holds only x is always an acceptable choice for
Rx.

2. If y is not used after instruction I, and Ry holds only y
after being loaded, Ry can also be used as Rx. A
similar option holds regarding z and Rx.

By Varun Arora

Possibilities for value of R
 If the address descriptor for v says that v is somewhere besides R,

then we are OK.

 If v is x, the value being computed by instruction I, and x is not
also one of the other operands of instruction I (z in this
example), then we are OK. The reason is that in this case, we
know this value of x is never again going to be used, so we are
free to ignore it.

 Otherwise, if v is not used later (that is, after the instruction I,
there are no further uses of v, and if v is live on exit from the
block, then v is recomputed within the block), then we are OK.

 If we are not OK by one of the first two cases, then we need to
generate the store instruction ST v, R to place a copy of v in its
own memory location. This operation is called a spill.

By Varun Arora

Characteristic of peephole optimizations

 Redundant-instruction elimination

 Flow-of-control optimizations

 Algebraic simplifications

 Use of machine idioms

By Varun Arora

Redundant-instruction elimination
 LD a, R0

ST R0, a

 if debug == 1 goto L1

goto L2

L I : print debugging information

L2:

By Varun Arora

Flow-of-control optimizations
goto L1

...

Ll: goto L2

Can be replaced by:

goto L2

...

Ll: goto L2

if a<b goto L1

...

Ll: goto L2

Can be replaced by:

if a<b goto L2

...

Ll: goto L2

By Varun Arora

Algebraic simplifications

 x=x+0

 x=x*1

By Varun Arora

Register Allocation and Assignment

 Global Register Allocation

 Usage Counts

 Register Assignment for Outer Loops

 Register Allocation by Graph Coloring

By Varun Arora

Global register allocation
 Previously explained algorithm does local (block based)

register allocation

 This resulted that all live variables be stored at the end of
block

 To save some of these stores and their corresponding loads,
we might arrange to assign registers to frequently used
variables and keep these registers consistent across block
boundaries (globally)

 Some options are:
 Keep values of variables used in loops inside registers

 Use graph coloring approach for more globally allocation

By Varun Arora

Usage counts
 For the loops we can approximate the saving by

register allocation as:

 Sum over all blocks (B) in a loop (L)

 For each uses of x before any definition in the block we
add one unit of saving

 If x is live on exit from B and is assigned a value in B,
then we ass 2 units of saving

By Varun Arora

Flow graph of an inner loop

By Varun Arora

Code sequence using global register
assignment

By Varun Arora

Register allocation by Graph
coloring
 Two passes are used

 Target-machine instructions are selected as though
there are an infinite number of symbolic registers

 Assign physical registers to symbolic ones

 Create a register-interference graph

 Nodes are symbolic registers and edges connects two nodes if
one is live at a point where the other is defined.

 For example in the previous example an edge connects a and d
in the graph

 Use a graph coloring algorithm to assign registers.

By Varun Arora

Intermediate-code tree for a[i]=b+1

By Varun Arora

Tree-rewriting rules

By Varun Arora

Syntax-directed translation scheme

By Varun Arora

An instruction set for tree matching

By Varun Arora

Ershov Numbers
 Label any leaf 1.

 The label of an interior node with one child is the label
of its child.

 The label of an interior node with two children is

 The larger of the labels of its children, if those labels are
different.

 One plus the label of its children if the labels are the
same.

By Varun Arora

A tree labeled with Ershov numbers

By Varun Arora

Generating code from a labeled expression tree
 To generate machine code for an interior node with label k and two

children with equal labels (which must be k - l) do the following:
 Recursively generate code for the right child, using base b+1. The result of

the right child appears in register Rb+k.
 Recursively generate code for the left child, using base b; the result appears

in Rb+k-1.
 Generate the instruction OP Rb+k, Rb+k-1, Rb+k, where OP is the appropriate

operation for the interior node in question.

 Suppose we have an interior node with label k and children with unequal
labels. Then one of the children, which we'll call the "big" child, has label k
, and the other child, the "little" child, has some label m < k. Do the
following to generate code for this interior node, using base b:
 Recursively generate code for the big child, using base b; the result appears

in register Rb+k-l.
 Recursively generate code for the small child, using base b; the result

appears in register Rb+m-l. Note that since m < k, neither Rb+k-l nor any
higher-numbered register is used.

 Generate the instruction OP Rb+k-l, Rb+m-l, Rb+k-1 or the instruction OP Rb+k-l,
Rb+k-l, Rb+m+l, depending on whether the big child is the right or left child,
respectively.

 For a leaf representing operand x, if the base is b generate the instruction
LD Rb, x.

By Varun Arora

Optimal three-register code

By Varun Arora

Evaluating Expressions with an
Insufficient Supply of Registers
 Node N has at least one child with label r or greater. Pick the larger

child (or either if their labels are the same) to be the "big" child and let
the other child be the "little" child.

 Recursively generate code for the big child, using base b = 1. The result
of this evaluation will appear in register Rr

 Generate the machine instruction ST tk, Rr, where tk is a temporary
variable used for temporary results used to help evaluate nodes with
label k.

 Generate code for the little child as follows. If the little child has label r
or greater, pick base b=1. If the label of the little child is j<r, then pick
b=r-j. Then recursively apply this algorithm to the little child; the result
appears in Rr.

 Generate the instruction LD Rr-l, tk.

 If the big child is the right child of N, then generate the instruction OP
Rr, Rr, Rr-1. If the big child is the left child, generate OP Rr, Rr-1, Rr.

By Varun Arora

Optimal three-register code
using only two registers

By Varun Arora

Dynamic Programming Algorithm

 Compute bottom-up for each node n of the expression tree T an
array C of costs, in which the ith component C[i] is the optimal
cost of computing the subtree S rooted at n into a register,
assuming i registers are available for the computation, for

 Traverse T, using the cost vectors to determine which subtrees of
T must be computed into memory.

 Traverse each tree using the cost vectors and associated
instructions to generate the final target code. The code for the
subtrees computed into memory locations is generated first.

 ri 1

By Varun Arora

Syntax tree for (a-b)+c*(d/e) with
cost vector at each node

By Varun Arora

minimum cost of evaluating the
root with two registers available
 Compute the left subtree with two registers available into

register R0, compute the right subtree with one register
available into register R1, and use the instruction ADD R0,
R0, R1 to compute the root. This sequence has cost
2+5+1=8.

 Compute the right subtree with two registers available into
R l , compute the left subtree with one register available
into R0, and use the instruction ADD R0, R0, R1. This
sequence has cost 4+2+1=7.

 Compute the right subtree into memory location M,
compute the left subtree with two registers available into
register RO, and use the instruction ADD R0, R0, M. This
sequence has cost 5+2+1=8.

By Varun Arora

