
Introduction to Compiler

Compiler Design by Varun Arora1

Translator

Compiler Design by Varun Arora2

 A translator is a program that takes a program as

input written in one programming language(the

source language) and produces as output a program

in another language(the object or target language).

What is a compiler?

Compiler Design by Varun Arora3

 A program that accepts as input a program text in a
certain language and produces as output a program
text in another language, while preserving the meaning
of that text (Grune et al, 2000).

 A program that reads a program written in one
language (source language) and translates it into an
equivalent program in another language (target
language) (Aho et al)

Source program

Target program

compiler

Compiler Design by Varun Arora4

 Executing a program written in a high-level

programming language is basically two step process.

 The Source Program must first be compiled i.e. translated

to the object program.

 The resulting object program is loaded into memory and

executed.

Compiler Object

Program

Source

Program

Object

Program

Object

Program

Output

Object

Program

Input

What is an interpreter?

Compiler Design by Varun Arora5

 A program that transforms a programming language into a
simplified language, called intermediate code, which can be
directly executed using a program called an interpreter.

 Interpreters are often smaller than compilers and facilitate
the implementation of complex programming language
constructs.

 The execution time of an interpreted program is usually
slower than that of a corresponding compiled object
program.

Examples

Compiler Design by Varun Arora6

 C is typically compiled

 Lisp is typically interpreted

Assembler

Compiler Design by Varun Arora7

 If the source language is assembly language and the

target language is machine language then the

translator is called assembler.

Preprocessor

Compiler Design by Varun Arora8

 Preprocessors are those translators that convert

program in one high-level language into equivalent

programs in another high-level language.

 Example: There are many FORTRANN

preprocessors that map “structured” versions of

FORTRAN into conventional FORTRAN.

Why do we need translators?

Compiler Design by Varun Arora9

 With machine language we must communicate directly

with computer in terms of bits, registers and very primitive

machine operations.

 Machine language program is a sequence of 0’s and 1’s.

 Programming a complex algorithm in such a language is

terribly tedious and fraught with opportunities for mistakes.

 The main disadvantage of machine language coding is

that all operations and operands must be specified in

numeric code.

 Not only machine language programs cryptic, but it also

may be impossible to modify in a convenient manner.

Symbolic Assembly Language

Compiler Design by Varun Arora10

 Because of the difficulties with machine language
programming, a host of “higher level” languages have been
invented to enable the programmer to code in a way that
resembles his own thought process rather than the elementary
steps of a computer.

 The most immediate step away from the machine language is
Symbolic Assembly language.

 In this language programmer uses mnemonic names for both
operation codes and data Addresses.

 Thus programmer could write ADD X, Y in assembly language
instead of 0110 001110 010101 in machine language.

 A computer can not execute a program written in assembly
language. That program has to be first translated to machine
language which the computer can understand. The program
that performs this translation is called Assembler.

Macros

Compiler Design by Varun Arora11

 A Macro statement translates a code into a sequence of
assembly language statements and perhaps other macro
statements before being translated into machine code.

 Thus a macro facility is a text replacement capability.

 There are two aspects of macros:
 Definition

 Use

 Example:

MACRO ADD2 X,Y

LOAD Y

ADD X

STORE Y

ENDMACRO

 We assume that the machine has only one register.

Macros (contd…)

Compiler Design by Varun Arora12

 Having defined ADD2 in this way, we can then use it as
ordinary assembly language code.

 For Example, if the statement ADD2 A, B is encountered
somewhere after the definition of ADD2, we have a
macro use.

 Here, the macro processor substitutes for ADD2 A,B
three statements which form the definition of ADD2, but
with the actual parameters A and B replacing the formal
parameters X and y, respectively. i.e. ADD2 A,B is
translated to

LOAD B

ADD A

STORE B

High Level Languages

Compiler Design by Varun Arora13

 There are some drawbacks of Assembly programs
 The programmer must still know the details of how a specific

program operates.

 He must mentally translate complex operations and data
structures into sequence of low-level operations which use only
the primitive data types that machine language provides.

 The programmer must be concerned with how and where the
data is represented within the machine.

 To avoid the above problems, high level languages were
developed.

 A high level language allows a programmer to express
algorithms in a more natural notation that avoids many of
the details of how a specific computer functions.

 A high level programming language makes the
programming task simpler.

High Level Languages (contd..)

Compiler Design by Varun Arora14

 We need a program to translate the high language

code into a a language that the machine can

understand.

 A Compiler translates a program written in high

language into a program that a machine can

understand.

 A compiler is more complex to write than assembler.

 Some compilers make use of an assembler as an

appendage, with compiler producing assembly code,

which is then assembled and loaded before being

executed in the resulting machine language code.

Qualities of a Good Compiler

Compiler Design by Varun Arora15

What qualities would you want in a compiler?

 generates correct code (first and foremost!)

 generates fast code

 conforms to the specifications of the input language

 copes with essentially arbitrary input size, variables, etc.

 compilation time (linearly)proportional to size of source

 good diagnostics

 consistent optimisations

 works well with the debugger

Principles of Compilation

Compiler Design by Varun Arora16

The compiler must:

 preserve the meaning of the program being compiled.

 “improve” the source code in some way.

Other issues (depending on the setting):

 Speed (of compiled code)

 Space (size of compiled code)

 Feedback (information provided to the user)

 Debugging (transformations obscure the relationship
source code vs target)

 Compilation time efficiency (fast or slow compiler?)

Uses of Compiler Technology

Compiler Design by Varun Arora17

 Most common use: translate a high-level program to object
code

 Optimizations for computer architectures:

 Automatic parallelisation or vectorisation

 Software productivity tools

 Security: Java VM uses compiler analysis to prove “safety” of
Java code.

 Text formatters, just-in-time compilation for Java, power
management, global distributed computing, …

Key: Ability to extract properties of a source program
(analysis) and transform it to construct a target program
(synthesis)

Structure of a Compiler

Compiler Design by Varun Arora18

 Compilation process is partitioned into a series of

sub processes called the phases.

 A phase is a logically cohesive operation that takes

as input one representation of the source program

and produces as output another representation.

 The structure of compilation process is shown in the

fig.(next slide)

Structure of a Compiler(contd..)

Compiler Design by Varun Arora19

Lexical Analysis

Syntax Analysis

Intermediate Code generation

Code Optimization

Semantic Analysis

Target Program

Error

Handling

Code Generation

Symbol

Table

Management

Source Program

29-Mar-20COMP36512 Lecture 220

Lexical Analysis (Scanning)

 Seperates the characters of the source language into
groups that logically belong togather; these groups are
called tokens.

 Usual tokens are keywords, such as DO or IF; identifiers
like X or NUM, Operator Symbols such as <= or + and
punctuation symbols such as paranthesis or commas.

 The output of the lexical analyzer is a stream of tokens,
which is passed to the next phase, the syntax analyzer or
parser.

 The lxical analyzer produces as output a token of the form
<token-name, attribute-value>

 E.g.: a=b+c becomes <id,a> <=,> <id,b> <+,> <id,c>
 Needs to record each id attribute: keep a symbol table.
 Lexical analysis eliminates white space, etc…

29-Mar-20COMP36512 Lecture 221

Syntax (or syntactic) Analysis

(Parsing)

 Groups tokens together into syntactic structures.

 For example: three tokens representing A+B might be grouped into a syntactic
structure called an expression.

 Expressions may further be combined to form statements.

 Often syntactic structure can be regarded as a tree whose leaves are tokens.

 Interior nodes of the tree represent string of tokens that logically belong together.

 Imposes a hierarchical structure on the token stream.

 This hierarchical structure is usually expressed by recursive rules.

 Context-free grammars formalise these recursive rules and guide syntax
analysis.

 Example:

expression expression ‘+’ term | expression ‘-’ term | term

term term ‘*’ factor | term ‘/’ factor | factor

factor identifier | constant | ‘(‘ expression ‘)’

(this grammar defines simple algebraic expressions)

29-Mar-20COMP36512 Lecture 222

Parsing: parse tree for b*b-4*a*c

expression

expression

term

factorterm

term

factor

term factor

factorterm

factor

-

*
*

<id,b>
<const,

4>

<id,b>

*

<id,c>

<id,a>

• Useful to recognise

a valid sentence!

• Contains a lot of unneeded

information!

29-Mar-20COMP36512 Lecture 223

AST for b*b-4*a*c

 An Abstract Syntax Tree (AST) is a more useful
data structure for internal representation. It is a
compressed version of the parse tree (summary
of grammatical structure without details about its
derivation)

-

*

<id,b> <id,b>

*

* <id,c>

<const,

4>
<id,a>

29-Mar-20COMP36512 Lecture 224

Semantic Analysis (context handling)

 Uses the syntax tree and the information in the
symbol table to check the source program for
semantic consistency with the language definition.

 Collects context (semantic) information, checks for
semantic errors, and annotates nodes of the tree with
the results.

 Examples:

 type checking: report error if an operator is applied to an
incompatible operand.

 check flow-of-controls.

 uniqueness or name-related checks.

29-Mar-20COMP36512 Lecture 225

Intermediate code generation

 Uses the structure produced by the syntax

analyzer to create a stream of simple

instructions.

 Translate language-specific constructs in the

AST into more general constructs.

 A criterion for the level of “generality”: it

should be straightforward to generate the

target code from the intermediate

representation chosen.

29-Mar-20COMP36512 Lecture 226

Code Optimisation

 It is an optional phase designed to improve the

intermediate code so that the ultimate object

program runs faster and/or takes less space.

 Its output is another intermediate code program

that does the same job as original but saves time

and space.

29-Mar-20COMP36512 Lecture 227

Code Generation Phase

 Produces the object code by deciding on
memory locations for data, selecting code to
access each datum, and selecting the
registers in which each computation is to be
done.

Table - Management or Bookkeeping

Compiler Design by Varun Arora28

 Keeps the track of the names used by the program

and records essential information about each, such

as its type (integer, real etc.) . The data structure

used to record this information is called symbol

table.

Error Handler

Compiler Design by Varun Arora29

 It is invoked when a flaw in the source program is

detected.

 It must warn the programmer by issuing a diagnostic

and adjust the information being passed from phase

to phase so that each phase can proceed.

29-Mar-20COMP36512 Lecture 230

Conceptual Structure:two major phases

 The portions of one or more phases are combined into a module called
passes.

 A pass reads the source program or the output of previous pass , makes
the transformations specified by its phases and writes output into an
intermediate file, which may then be read by subsequent pass.

 The number of passes and the grouping of phases into the passes, are
usually dictated by a variety of considerations to a perticular language or
machine.

 The structure of the source language has a strong effect on the number of
passes.

 Certain languages require at least two passes to generate code easily.

 The environment in which the compiler must operate can also affect the
number of passes.

 A multi pass compiler can be made to use less space than single pass
compiler, since the space occupied by the compiler program for one pass
can be reused by the following pass.

 A multi pass compiler is slower than a single pass compiler , because each
pass reads and writes an intermediate file.

 Thus compilers running on a computer with small memory would use several
passes while, on a computer with a large RAM , a compiler with fewer passes
will be possible.

Compiler Design by Varun Arora31

 Front-end performs the analysis of the source
language:
 Recognises legal and illegal programs and reports errors.
 “understands” the input program and collects its semantics

in an IR.
 Produces IR(Intermediate Representation) and shapes the

code for the back-end.
 Much can be automated.

 Back-end does the target language synthesis:
 Chooses instructions to implement each IR operation.
 Translates IR into target code.
 Needs to conform with system interfaces.
 Automation has been less successful.

Cross Compiler

Compiler Design by Varun Arora32

 A compiler is characterized by three languages: its

source language, its object language and the

language in which it is written.

 These languages may all be different.

 A compiler may run on one machine and produce

object code for other machine.

 Such compiler is called Cross Compiler.

 Many minicomputer and microprocessor compilers

are implemented in this way, they run on a bigger

machine and produce object code for the smaller

machine.

Bootstrapping (compilers)

Compiler Design by Varun Arora33

 Bootstrapping is the technique for producing a self-
compiling compiler — that
is, compiler (or assembler) written in the
source programming language that it intends to
compile.

 An initial core version of the compiler (the bootstrap
compiler) is generated in a different language (which
could be assembly language); successive expanded
versions of the compiler are developed using this
minimal subset of the language.

 Many compilers for many programming languages
are bootstrapped, including compilers
for BASIC, ALGOL, C etc.

