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CHAPTER 1

INTRODUCTION TO PATTERN RECOGNITION
SYSTEM

1.1 Overview

One of the most important capabilities of mankind is learning by experience, by our
endeavors, by our faults. By the time we attain an age of five most of us are able to recognize
digits, characters; whether it is big or small, uppercase or lowercase, rotated, tilted. We will
be able to recognize, even if the character is on a mutilated paper, partially occluded or even
on the clustered background. Looking at the history of the human search for knowledge, it is
clear that humans are fascinated with recognizing patterns in nature, understand it, and
attempt to relate patterns into a set of rules. But the question is how this experience can be
used to make machines to learn. The most important challenge is how to generalize these
experiences, how do we make decisions and how our experiences can be built into a
machine? This has been one of the main fundamental principles behind the development of
vast range of theories and concepts that are based on the natural world.

Looking at the history, pattern recognition system has come a long way. Earlier it was
confined to theoretical research in the field of statistics for deriving various models out of the
large amount of data. With the advent in computer technology, number of practical
applications is increased in manifold which lead to further theoretical developments. At
present, pattern recognition has become integral part of any machine intelligence system that
exhibit decision making capabilities. Many different mathematical techniques are used for
this purpose.

Pattern recognition is concerned with the design and development of systems that
recognize patterns in data. The purpose of a pattern recognition program is to analyze a scene
in the real world and to arrive at a description of the scene which is useful for the
accomplishment of some task. The real world observations are gathered through sensors and
pattern recognition system classifies or describes these observations. A feature extraction
mechanism computes numeric or symbolic information from these observations. These
extracted features are then classified or described using a classifier. The process used for
pattern recognition consists of many procedures that ensure efficient description of the

patterns.
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1.2 Pattern Recognition

Pattern recognition can be defined as the categorization of input data into identifiable
classes via the extraction of significant features or attributes of the data from a background of
irrelevant detail. Duda and Hart defined it as a field concerned with machine recognition of
meaningful regularities in noisy or complex environments. A more simple definition is
search for structure in data. According to Jain et al. pattern recognition is a general term to
describe a wide range of problems like recognition, description, classification, and grouping
of patterns. Pattern recognition is about guessing or predicting the unknown nature of an
observation, a discrete quantity such as black or white, one or zero, sick or healthy, real or
fake. Watanabe defined a pattern as “opposite of a chaos; it is an entity, vaguely defined, that
could be given a name.” For example, a pattern could be a fingerprint image, a handwritten
word, a human face, or a speech signal. The pattern recognition problems are important in a
variety of engineering and scientific disciplines such as biology, psychology, medicine,
marketing, artificial intelligence, computer vision and remote sensing.

The field of pattern recognition is concerned mainly with the description and analysis
of measurements taken from physical or mental processes. It consists of acquiring raw data
and taking actions based on the “class” of the patterns recognized in the data. Earlier it was
studied as a specialized subject due to higher cost of the hardware for acquiring the data and
to compute the answers. The fast developments in computer technology and resources
enhanced possible various practical applications of pattern recognition, which in turn
contributed to the demands for further theoretical developments.

The design of a pattern recognition system essentially involves the following three
aspects: data representation, Classification and finally, Prototyping. The problem domain
dictates the choice of sensors, pre-processing techniques, representation scheme, and

decision making model.
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i. Representation - It describes the patterns to be recognized;

ii. Classification - It recognizes the “category” to which the patterns provided belong

to;

iii. Prototyping - It is the mechanism used for developing the prototypes or models.
Prototypes are used for representing the different classes to be
recognized.

A general pattern recognition system is shown in the Figure 1.1. In the first step data
is acquired and preprocessed, this step is followed by feature extraction, feature reduction
and grouping of features, and finally the features are classified. In the classification step, the
trained classifier assigns the input pattern to one of the pattern classes based on the measured
features. The training set used during construction of the classifier is different from the test

set which is used for evaluation. This ensures different performance environment.
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Figure 1.1: A general pattern recognition system
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1.3 Pattern Recognition approaches

Patterns generated from the raw data depend on the nature of the data. Patterns may
be generated based on the statistical feature of the data. In some situations, underlying
structure of the data decides the type of the pattern generated. In some other instances,
neither of the two situation exits. In such scenarios a system is developed and trained for
desired responses. Thus, for a given problem one or more of these different approaches may
be used to obtain the solution. Hence, to obtain the desired attributes for a pattern recognition
system, there are many different mathematical techniques. The four best-known approaches
for the pattern recognition are:

1. Template matching

2. Statistical classification

3. Syntactic matching

4. Neural networks

In template matching, the prototype of the pattern to be recognized is compared
against the pattern to be recognized. In the statistical approach, the patterns are described as
random variables, from which class densities can be inferred. Classification is done based on
the statistical modeling of data. In the syntactic approach, a pattern is seen as being
composed of simple sub-patterns which are themselves built from yet simpler sub-patterns,
the simplest being the primitives. Inter relationships between these primitive patterns are
used to represent a more complex pattern. The neural network approach to pattern
recognition is strongly related to the statistical methods, since they can be regarded as
parametric models with their own learning scheme.

The models proposed need not be independent and sometimes the same pattern
recognition method exists with different interpretations. A hybrid system may be built
involving multiple models. The comparison of different approaches is summarized in

Table 1.1.
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Table 1.1: Pattern Recognition Models

Approach Representation Recognition Typical Criterion
Function
Template Matching Samples, pixels, Correlation, distance | Classification error
Curves measure
Statistical Features Discriminant Classification error
Function
Syntactic or Primitives Rules, grammar Acceptance error
Structural
Neural networks Samples, pixels, Network function Mean square error
features

1.3.1 Template matching

One of the simplest and earliest approaches to pattern recognition is based on
template matching. Matching is carried out to determine the similarity between two entities
such as points, curves, or shapes of the same type. In template matching, a template or a
prototype of the pattern to be recognized is available. The pattern to be recognized is
matched against the stored template while taking into account all allowable operations such
as translation, rotation and scale changes. The similarity measure, often a correlation, may be
optimized based on the available training set. Often, the template itself is learned from the
training set. Template matching is computationally demanding. Present day computers with
higher computation power, due to their faster processors, has made this approach more
feasible. The rigid template matching even though effective in some application domains has
a number of disadvantages. For example, it would fail if the patterns are distorted due to the
imaging process, viewpoint change, or large intra-class variations among the patterns. When
the deformation cannot be easily explained or modeled directly, deformable template models

or rubber sheet deformations can be used to the match patterns.
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1.3.2 Statistical Pattern Recognition

The statistical pattern recognition approach assumes statistical basis for classification
of data. It generates random parameters that represent the properties of the pattern to be
recognized. The main goal of statistical pattern classification is to find to which category or
class a given sample belongs. Statistical methodologies such as statistical hypothesis testing,
correlation and Bayes classification are used for implementing this method. The effectiveness
of the representation is determined by how well pattern from different classes are well
separated.

To measure the nearness of the given sample with one of the classes, statistical
pattern recognition uses probability of error. Bayesian classifier is a natural choice in
applying statistical methods to pattern recognition. However, its implementation is often
difficult due to the complexity of the problems and especially when the dimensionality of the
system is high. One can also consider simpler solution such as a parametric classifier based
on assumed mathematical forms such as linear, quadratic or piecewise. Initially a parametric
form of the decision boundary is specified; then the best decision boundary of the specified
form is found based on the classification of training samples. Another important issue
concerned with statistical pattern recognition is the estimation of the values of the parameters
since they are not given in practice. In these systems it is always important to understand
how the number of samples affects the classifier design and performance.

1.3.3 Syntactic Pattern Recognition

In many situations there exist interrelationship or interconnection between the
features associated with a pattern. In such circumstances it is appropriate to assume a
hierarchical relationship where a pattern is viewed as being consist of simple sub patterns
which are themselves built with yet another sub pattern. This is the basis of Syntactic pattern
recognition. In this method symbolic data structures such as arrays, strings, trees, or graphs
are used for pattern representation. These data structures define the relations between
fundamental pattern components and allow the representation of hierarchical models. Thus
complex patterns can be represented from simpler ones. The recognition of an unknown
pattern is accomplished by comparing its symbolic representation with a number of
predefined objects. This comparison helps to compute the similarity measurement between

the unknown input and with known patterns.
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The symbolic data structures used for the representation of the patterns are
represented by words of symbols or strings. The individual symbols in a string usually
represent components of the atomic pattern. The strings are however one-dimensional in
nature but many patterns are inherently two or more dimensional. One of the most used and
powerful symbolic structure for higher dimensional data representation is a graph. A graph is
composed of a set of nodes and a set of edges in which the nodes represent simpler sub-
patterns and the edges the relations between those sub-patterns. These relations may be
spatial, temporal or of any other type, depending on the problem. An important subclass of a
graph is a tree. A tree has three different classes of nodes, which are root, interior and leave.
Trees are intermediate between strings and graphs. They are interesting for pattern
recognition applications since they are more powerful than strings as a representation of the
object and computationally less expensive than graphs. Another form of symbolic
representation is the array which is a special type of graph which has the nodes and edges
arranged in a regular form. This type of data structure is very useful for low level pattern
representation.

Structural pattern recognition is found to be good because it provides a description of
how the given pattern is constructed from the primitives in addition to classification. This
method is useful in situations where the patterns have a definite structure which can be
captured in terms of a set of rules. However, due to parsing difficulties the implementation of
a syntactic approach is limited. It is very difficult to use this method for segmentation of
noisy patterns and another problem is inference of the grammar from training data. Powerful
pattern recognition capabilities can be achieved by combining the syntactic and statistical

pattern recognition techniques [Fu 1986].
1.3.4 Neural Network

Neural computing is based on the way by which biological neural system store and
manipulates information. It can be viewed as parallel computing environment consisting of
interconnection of large number of simple processors. Neural network have been successfully
applied in many tasks of pattern recognition and machine learning systems. The structure of
neural system is drawn from analogies with biological neural systems. Many algorithms have
been designed to work with neural network learning have been developed. In these

algorithms, a set of rules defines the evolution process undertaken by the synaptic
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connections of the networks, thus allowing them to learn how to perform specified tasks.
Neural network models uses a network of weighted directed graphs in which the nodes are
artificial neurons and directed edges are connections between neuron outputs and neuron
inputs. The neural networks have the ability to learn complex nonlinear input-output
relationships, use sequential training procedures, and adapt themselves to the data.

Different types of neural networks are used for pattern classification. Among them Feed-
forward network and Kohonen-Network is commonly used. The learning process involves
updating network architecture and connection weights so that a network can efficiently
perform a specific classification/clustering task. The neural network models are gaining
popularity because of their ability to solve pattern recognition problems, seemingly low
dependence on domain-specific knowledge, and due to the availability of efficient learning
algorithms for practitioners to use. Neural networks are also useful for implementing
nonlinear algorithms for feature extraction and classification. In addition, existing feature
extraction and classification algorithms can also be mapped on neural network architectures
for efficient implementation. In spite of the seemingly different underlying principles, most
of the well-known neural network models are implicitly equivalent or similar to classical

statistical pattern recognition methods.
1.4 Feature Extraction and Reduction

Feature selection is the process of choosing input to the pattern recognition system.
Many methods can be used to extract the features. The feature selected is such that it is
relevant to the task at hand. These features can be obtained from the mathematical tools or by
applying feature extraction algorithm or operator to the input data. The level at which these
features are extracted determines the amount of necessary preprocessing and may influence
the amount of error introduced into the feature extracted. Features many be represented as
continuous, discrete, or discrete binary variables. During the features extraction phase of the
recognition process objects are measured. A measurement is the value of some quantifiable
property of an object. A feature is a function of one or more measurements, computed so that
it quantifies some significant characteristic of the object. This process produces a set of
features that, taken together, forms the feature vector.

A number of transformations can be used to generate features. The basic idea is to

transform a given set of measurements to a new set of features. Transformation of features
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can lead to a strong reduction of information as compared with the original input data. In
most of the situations relatively small number of features is sufficient for correct recognition.
Obviously feature reduction is a sensitive procedure since if the reduction is done incorrectly
the whole recognition system may fail or may not produce the expected results. Examples of
such transformations are the Fourier transform, Empirical mode decomposition, and the Haar
transform. Feature generation via linear transformation techniques is just one of the many
possibilities. Feature extraction also depends on application in hand and may use different
techniques such as moment-based features, chain codes, and parametric models to obtain

required features.
1.5 Cluster Analysis

The main objective in clustering techniques is to partition a given data set into
homogeneous clusters. The term homogeneous is used in the sense that all points in the same
group are similar to each other and are not similar to points in other groups. The similarity of
these points is defined according to some established criteria.

While the use of clustering in pattern recognition and image processing is relatively
recent, cluster analysis is not a new field. It has been used in other disciplines, such as
biology, psychology, geology and information retrieval. The majority of the clustering
algorithms find clusters of a particular shape. Most of the real problems involve clustering in
higher dimension. And the difficulties with the natural interpretation of data embedded in a
high dimensional space are evident. Clustering method is a very active field in pattern
recognition and data mining. Thus a large amount of clustering algorithms continues to
appear in the literature. Most of these algorithms are based on proximity measures. Even
though, there are a class of algorithm based on different combinations of a proximity
measure and a clustering scheme. Clustering is a major tool used in a number of applications,
which can be basically used in four different ways namely data reduction, hypothesis

generation, hypothesis testing and prediction based on group.
1.6 Classifiers Design

Classifiers are designed to perform the classification stage of the pattern recognition
system. A Classifier partitions the feature space into different regions. The border of each
decision region is a decision boundary. The determination of region to which the feature

vector belongs to is a challenging task. There are many approaches for the design of the
9
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classifier in a pattern recognition system and they can be grouped in three classes: classifiers
based on Bayes decision theory, linear and nonlinear classifiers.

The first approach builds upon probabilistic arguments stemming from the statistical
nature of the generated features. This is due to the statistical variation of the patterns as well
as to possible noise obtained in the signal acquisition phase. The objective of this type of
design is to classify an unknown pattern in the most probable class as deduced from the
estimated probability density functions. Even though linear classifiers are more restricted in
their use, the major advantage is their simplicity and computational demand in solving
problems which do not require more sophisticated nonlinear model. Examples of linear
classifiers are the perceptron algorithm and least squares methods. For problems that are not
linearly separable and for which the design of a linear classifier, even in an optimal way,

does not lead to satisfactory performance, the use of nonlinear classifier are mandatory.
1.7 Importance and Applications

The progress of society from the era of industrial revolution to knowledge based era
has created a need for faster and more reliable information handling and retrieval systems.
Automation in industrial production and efficient management processes are gained much
importance. With the advent in the Internet and information technology has made the
manufacturing sector to reach any part of the globe. These tendencies have pushed pattern
recognition to the high edge of computer and engineering research and applications. Today
pattern recognition is an integral part in most machine intelligence systems design for
decision making task which are used in a variety of applications such as artificial intelligent
system and image understanding and analysis.

Nowadays the interest in the area of pattern recognition comes from applications such
as data mining, document classification, biometrics, financial forecasting, and computer
vision. Tablel.2 gives some more examples of applications in different domains. A common
characteristic of a number of these applications is that the available features are usually not
suggested by domain experts, but must be extracted and optimized by data-driven
procedures. It is necessary to note that there is no simple approach for optimal solutions and
that multiple methods and approaches need to be used. Accordingly, several classifiers are

combined together to obtain better result in pattern recognition systems.
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Table 1.2: Examples of different pattern recognition applications

Problem domain Application Input Pattern Pattern Classes
Bio-informatics Sequence analysis DNA/Protein Known types of
sequence genes/patterns
Data Mining Searching for Points in Compact and well
requied multidimensional separated clusters
patterns space
Document Internet search Text document Semantic
classification categories (e.g. sports)

Document image

Reading machine

document image

Alphanumeric

analysis for blind characters, words
Industrial Printed circuit Intensity or range Defective /

automation board inspection image non-defective

nature of product

Multimedia Internet search Video clip Video genres (e.g.

database retrieval action, dialogue,

etc.)
Biometric Personal Face, iris, Authorized users
recognition identification fingerprint for access control
Remote sensing Forecasting Multispectral Land use
weather, crop image categories, growth

yield pattern of crops
Speech Speaker Speech waveform Spoken words
recognition identification
Medicine Disease Scanned image Diseased areas in the
identification body

Machine vision for example is an area in which pattern recognition is of clear
importance. A machine vision system acquires images through a camera, these signals are

analyzed so to produce a description and categorization of objects in the image. Typical
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application of this type is desirable in the manufacturing industry for automated visual
inspection or automation in the assembly line.

Character recognition is another important application in the area of pattern
recognition, with major implications in automation and information handling. Optical
character recognition (OCR) systems consist in a scanning device and pattern recognition
software that translates the scanned imaged into computer coded characters. The advantage
of storing the recognized document are clear since it is more efficient to store ASCII
characters than a document image, also it turns possible further electronic processing. There
is a great interest in systems that recognize handwritten characters besides the machine
printed character recognition systems. A typical commercial application of such system is
machine reading of bank checks. Another application lies in automatic mail sorting machines
for postal code identification in post offices. On-line handwritten recognition systems are
another area of great commercial interest. Such system would accompany pen computers and
greatly improve human computer interface.

Recently, there has been a great amount of effort invested in speech recognition
systems. Speech is the most natural means by which we communicate and exchange
information. The potential application for such a system is numerous. One of the goal of this
kind of system is to enter data into a computer via a microphone and a major effort has been
done towards this direction with considerable success.

Computer-aided diagnosis is also an important and possible application of pattern
recognition systems. The task of these systems would be assisting doctors in making
diagnostic decisions. The need for a computer-aided diagnosis came from the fact that
medical data are often not so easily interpretable. So an automatic pattern recognition system
can assist a doctor with a second opinion.

In addition to the applications described above several other uses of pattern
recognition system are of importance such as fingerprint identification, signature
authentication, and text retrieval, and face and gesture recognition. The field of pattern
recognition still poses some great challenges not just with applied and implementational

problems, but also on the theoretical framework.
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Parameter Estimation

Density estimation when the density is assumed to be in a specific parametric family.
Special cases include maximum likelihood, maximum a posteriori, unbiased estimation,
and predictive estimation. See the section on Parameter estimation techniques.

Parameter estimation techniques

Maximum likelihood
A parameter estimation heuristic that seeks parameter values that maximize the
likelihood function for the parameter. This ignores the prior distribution and so is
inconsistent with Bayesian probability theory, but it works reasonably well.

Maximum A Posteriori
A parameter estimation heuristic that seeks parameter values that maximize the posterior
density of the parameter. This implies that you have a prior distribution over the
parameter, i.e. that you are Bayesian. MAP estimation has the highest chance of getting
the parameter exactly right. But for predicting future data, it can be worse than Maximum
Likelihood; predictive estimation is a better Bayesian method for that purpose. MAP is
also not invariant to reparameterization;

Unbiased estimation
A parameter estimation procedure based on finding an estimator function that minimizes
average error. When the average error is zero then the estimator is "unbiased." The error
of the function is averaged over possible data sets, including ones you never observed.
The best function is then used to get parameter values. See "Pathologies of Orthodox
Statistics".

Predictive estimation
Parameter estimation consistent with Bayesian probability theory. It seeks to minimize
the expected "divergence" between the estimated distribution and the true distribution.
The divergence is measured by Kullback and Leibler's formula. The distribution which
achieves minimum divergence corresponds to integrating out the unknown parameter
Hence predictive estimation can be approximated by averaging over several different
parameter choices. See "Inferring a Gaussian distribution”, "A Comparison of Scientific
and Engineering Criteria for Bayesian Model Selection”, Geisser, and Bishop.

Minimum Message Length
A parameter estimation technique similar to predictive estimation but motivated by
information theory. Consider compressing the data via a two-part code: the first part is a
parameter setting, encoded with respect to the prior, and the second part is the data,
encoded with respect to the model with that parameter. Parameters are continuous, and so
cannot be encoded exactighey must be quantized, which introduces error. So we can't
choose the parameters which simply compress the data most; we have to choose
parameters which compress the data well even if the parameters are slightly modified.
The parameter setting which balances this tradeoff between accuracy and robustness is
the MML estimate. See


http://alumni.media.mit.edu/~tpminka/statlearn/glossary/glossary.html#Parameter%20estimation%20techniques
http://research.microsoft.com/~minka/papers/pathologies.html
http://research.microsoft.com/~minka/papers/pathologies.html
http://research.microsoft.com/~minka/papers/gaussian.html
http://www.research.microsoft.com/~heckerman/default.htm
http://www.research.microsoft.com/~heckerman/default.htm
http://www.amazon.com/exec/obidos/ASIN/0412034719
http://www.amazon.com/exec/obidos/ASIN/0198538642

o "Estimation and Inference by Compact Coding", Wallace and Freeman, Journal
of the Royal Statistical Society B 49(3):24265, 1987

o The Computer Journal special issue: MDLM$AL

e "The Maximum Local Mass estimate”

o "Keeping Neural Networks Simple by Minimizing the Description Length of the
Weights"

e Minimum Message Length model selection

Some related methods:

e "Flat Minima"
« "Bayesian backpropagation over I-O functions rather than weights"

Bootstrapping
A technique for simulating new data sets, to assess the robustness of a model or to
produce a set of likely models. The new data sets are created by re-sampling with
replacement from the original training set, so each datum may occur more than once. See
"What are cross-validation and bootstrapping?" and "The Bootstrap is Inconsistent with
Probability Theory".

Bagging
Bootstrap averaging. Generate a bunch of models via bootstrapping and then average
their predictions. See "Bagging Predictors”, "Why does bagging work?", and "Bayesian
model averaging is not model combination”.

Monte Carlo integration
A technique for approximating integrals in Bayesian inference. To approximate the
integral of a function over a domain D, generate samples from a uniform distribution over
D and average the value of the function at those samples. More generally, we can use a
non-uniform proposal distribution, as long as we weight samples accordingly. This is
known asimportance sampling (which is an integration method, not a sampling
method). For Bayesian estimation, a popular approach is to sample from the posterior
distribution, even though it is usually not the most efficient proposal distribution. Gibbs
sampling is typically used to generate the sampletbs sampling employs a
succession of univariate samples (a Markov Chain) to generate an approximate sample
from a multivariate density. See "Introduction to Monte Carlo methd@sbbabilistic
Inference using Markov Chain Monte Carlo Methods", and the Markov Chain Monte
Carlo home page. Software includes BUGS and FBM.

Regularization
Any estimation technique designed to impose a prior assumption of "smoothness" on the
fitted function. See "Regularization Theory and Neural Networks Architectures".

Expectation-Maximization (EM)
An optimization algorithm based on iteratively maximizing a lower bound. Commonly
used for maximum likelihood or maximum a posteriori estimation, especially fitting a
mixture of Gaussians. See

« "Expectation-Maximization as lower bound maximization"
e "A Gentle Tutorial on the EM Algorithm"


http://www.google.co.uk/search?q=The+Computer+Journal+special+issue%3A+MDL+vs%2E+MML
http://www.merl.com/reports/TR94-23/
http://www.cs.utoronto.ca/~drew/colt93.ps
http://www.cs.utoronto.ca/~drew/colt93.ps
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/glossary.html#Minimum%20Message%20Length%20model%20selection
ftp://ftp.idsia.ch/pub/juergen/fm.ps.gz
ftp://ftp.santafe.edu/pub/dhw_ftp/nips.93.TR.ps.Z
ftp://ftp.sas.com/pub/neural/FAQ3.html#A_cross
http://www.santafe.edu/research/publications/wpabstract/199510091
http://www.santafe.edu/research/publications/wpabstract/199510091
ftp://ftp.stat.berkeley.edu/pub/users/breiman/bagging.ps.Z
http://www.ics.uci.edu/~pedrod/kdd97.ps.gz
http://research.microsoft.com/~minka/papers/bma.html
http://research.microsoft.com/~minka/papers/bma.html
http://www.inference.phy.cam.ac.uk/mackay/abstracts/erice.html
http://www.cs.toronto.edu/~radford/review.abstract.html
http://www.cs.toronto.edu/~radford/review.abstract.html
http://www.statslab.cam.ac.uk/~mcmc/pages/links.html
http://www.statslab.cam.ac.uk/~mcmc/pages/links.html
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
http://www.cs.toronto.edu/~radford/fbm.software.html
http://citeseer.ist.psu.edu/girosi95regularization.html
http://research.microsoft.com/~minka/papers/em.html
http://www.icsi.berkeley.edu/~bilmes/papers/em.ps.gz

e "Convexity, Maximum Likelihood and All That"
e "Very Fast EM-based Mixture Model Clustering using Multiresolution kd-trees"

Variational bound optimization
A catch-all term for variations on the EM algorithm which use alternative lower bounds
(usually simpler ones). The particular lower bound used by EM can lead to an intractable
E-step. With a looser bound, the iterative update is more tractable, at the cost of
increasing the number of iterations. Another approach, though less often used, is to use a
tighter bound, for faster convergence but a more expensive update. See "An introduction
to variational methods for graphical models”, "Notes on variational learning”, "Exploiting
tractable substructures in intractable networks".

Variational bound integration
To approximate the integral of a function, lower bound the function and then integrate the
lower bound. Not to be confused with Jensen bound integra#ianational Bayes
applies this technique to the likelihood function for integrating out parameters. The EM
bound can be used for this, or any of the simpler bounds used for variational bound
optimization. See

e "Using lower bounds to approximate integrals”

« "Variational Bayes for 1-dimensional mixture models"

e "Ensemble Learning for Hidden Markov Models"

« "Inferring parameters and structure of latent variable models by variational
Bayes"

« "Bayesian parameter estimation via variational methods"

Jensen bound integration
To approximate the integral of a function, apply Jensen's inequality to turn the integral
into a product which lower-bounds the integral. The bound has free parameters which are
chosen to make it as tight as possible. Unlike variational bound optimization, the
integrand itself does not need to be bounded, and very different answers can result from
the two methods. See

"Ensemble Learning for Multi-Layer Networks"
"Bayesian Model Selection for Support Vector Machines, Gaussian Processes and
Other Kernel Classifiers"

« "Improving the mean field approximation via the use of mixture distributions"

Expectation Propagation
To approximate the integral of a function, approximate each factor by sequential
moment-matching. For dynamic systems, it generalizes Iterative Extended Kalman
filtering. For Markov nets, it generalizes belief propagation. See A roadmap to research
on EP.

Newton-Raphson
A method for function optimization which iteratively maximizes a local quadratic
approximation to the objective function (not necessarily a lower bound as in Expectation-


http://www.cs.cmu.edu/~aberger/maxent.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/reinforcement/papers/fastem.ps
http://www.cs.berkeley.edu/~jordan/papers/variational-intro.pdf
http://www.cs.berkeley.edu/~jordan/papers/variational-intro.pdf
http://www.fil.ion.ucl.ac.uk/~wpenny/publications/var.ps
http://www.cs.berkeley.edu/~jordan/papers/exploit.ps.Z
http://www.cs.berkeley.edu/~jordan/papers/exploit.ps.Z
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/glossary.html#Jensen%20bound%20integration
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/glossary.html#Variational%20bound%20optimization
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/glossary.html#Variational%20bound%20optimization
http://research.microsoft.com/~minka/papers/rem.html
http://www.fil.ion.ucl.ac.uk/~wpenny/publications/vbmog.ps
http://www.inference.phy.cam.ac.uk/mackay/abstracts/ensemblePaper.html
http://citeseer.ist.psu.edu/attias99inferring.html
http://citeseer.ist.psu.edu/attias99inferring.html
http://www.cs.berkeley.edu/~jordan/publications.html
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/glossary.html#Variational%20bound%20optimization
http://nips.djvuzone.org/djvu/nips10/0395.djvu
http://www.cs.cmu.edu/Web/Groups/NIPS/NIPS99/99papers-pub-on-web/Named-gz/Seeger.ps.gz
http://www.cs.cmu.edu/Web/Groups/NIPS/NIPS99/99papers-pub-on-web/Named-gz/Seeger.ps.gz
http://www.cs.berkeley.edu/~jordan/papers/mixture-mean-field.ps.Z
http://research.microsoft.com/~minka/papers/ep/roadmap.html
http://research.microsoft.com/~minka/papers/ep/roadmap.html
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/glossary.html#Expectation-Maximization%20%28EM%29

Maximization). If the local approximation is not quadratic, we havgeneralized
Newton method See "Beyond Newton's method".

Iteratively Reweighted Least Squares
A method for maximum likelihood estimation of a generalized linear model. It is
equivalent to Newton-Raphson optimization. See McCullagh&Nelder.

Back-propagation
A method for maximum likelihood estimation of a feed-forward neural network. It is
equivalent to steepedescent optimization. See Bishop.

Backfitting
A method for maximum likelihood estimation of a generalized additive regression. You
iteratively optimize each i while holding the others fixed. It is equivalent to the Gauss-
Seidel method in numerical linear algebra. See Hastie&Tibshirani and "Bayesian
backfitting".

Kalman filtering
An algorithm for inferring the next state or next observation of a Linear Dynamical
System. By making the state a constant, it can also be used for incrementally building up
a maximum-likelihood estimate of a parameter. See "An Introduction to the Kalman
Filter" (with links), "Dynamic Linear Models, Recursive Least Squares and Steepest
Descent Learning", "From Hidden Markov Models to Linear Dynamical Systems", and
Gelb (Ch.4).

Extended Kalman filtering
Kalman filtering applied to general dynamical systems with Gaussian noise. At each step,
the dynamical system is approximated with a linear dynamical system, to which the
Kalman filter is applied. The linear approximation can be iteratively refined to improve
the accuracy of the Kalman filter output. Despite the name, extended Kalman filtering is
not really different from Kalman filtering. See Gelb.

Relaxation labeling
An optimization algorithm for finding the most probable configuration of a Markov
random field. It generalizes the Viterbi algorithm for Markov chains. Other approaches to
this problem include Iterated Complete Modes, simulated annealing, network flow, and
variational lower bounds. See "Foundations of Relaxation Labeling Processes" (Hummel
and Zucker; appears in Readings in Computer Vision), "Self Annealing: Unifying
deterministic annealing and relaxation labeling", "Probabilistic relaxation”, and Li.

Deterministic annealing
An optimization techniqgue where the true objective function is morphed into a convex
function by a continuous convexity parameter. Start by solving the convex problem and
gradually morph to the true objective while iteratively recomputing the optimum. It is
called "graduated nonconvexity" in statistical physics, where the convexity parameter
often corresponds to temperature. See

o "Deterministic Annealing for Clustering, Compression, Classification,
Regression, and Related Optimization Problems" (Rose, Proc. IEEE Nov 1998)

o "Deterministic Annealing Variant of the EM Algorithm" (Ueda and Nakano, NIPS
7)

« "Statistical Physics, Mixtures of Distributions and the EM Algorithm"

o "Self Annealing: Unifying deterministic annealing and relaxation labeling”


http://research.microsoft.com/~minka/papers/newton.html
http://www.amazon.com/exec/obidos/ASIN/0412317605
http://www.amazon.com/exec/obidos/ASIN/0198538642
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/glossary.html#Additive%20regression
http://www.amazon.com/exec/obidos/ASIN/0412343908
http://www-stat.stanford.edu/~hastie/Papers/
http://www-stat.stanford.edu/~hastie/Papers/
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/glossary.html#Linear%20Dynamical%20System
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/glossary.html#Linear%20Dynamical%20System
http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
http://www.cs.unc.edu/~welch/kalman/index.html
http://www.fil.ion.ucl.ac.uk/~wpenny/publications/kalman.ps
http://www.fil.ion.ucl.ac.uk/~wpenny/publications/kalman.ps
http://vismod.media.mit.edu/tech-reports/TR-531-ABSTRACT.html
http://www.amazon.com/exec/obidos/ASIN/0262570483
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/glossary.html#General%20dynamical%20system
http://www.amazon.com/exec/obidos/ASIN/0262570483
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/glossary.html#Markov%20random%20field
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/glossary.html#Markov%20random%20field
http://www.amazon.com/exec/obidos/ASIN/0934613338
http://noodle.med.yale.edu/anand/ps/premm.ps.gz
http://noodle.med.yale.edu/anand/ps/premm.ps.gz
http://www.ee.surrey.ac.uk/cgi-bin/G.Matas/genSelectKey.cgi?key=Christmas95a&file=/public/www/Personal/K.Messer/Biblio/bib/vsspBib.bib
http://www.cs.cmu.edu/Groups/NIPS/
http://www-aig.jpl.nasa.gov/public/home/pauls/
http://noodle.med.yale.edu/anand/ps/premm.ps.gz

o '"Distributional Clustering of English Words"
e "On the Generalization of Deterministic Annealing as Constrained Optimisation”

Boosting
A technique for combining models based on adaptive resampling: different data is given
to different models. The idea is to successively omit the "easy" data points, which are
well modeled, so that the later models focus on the "hard" data. See Schapire's page
"Additive Logistic Regression: a Statistical View of Boosting”, "Prediction Games and
Arcing Algorithms", and "Half&Half Bagging and Hard Boundary Points".

Empirical Risk Minimization
A parameter estimation heuristic that seeks parameter values that minimize the "risk" or
"loss" that the model incurs on the training data. In classification, a "loss" usually means
an error, so it corresponds to choosing the model with lowest training error. In regression,
"loss" usually means squared error, so ERM corresponds to choosing the curve with
lowest squared error on the training data. It is thus the most basic (and naive) estimation
heuristic. This method only uses a loss function appropriate for the problem and does not
utilize a probabilistic model for the data. See "Empirical Risk Minimization is an
incomplete inductive principle".


http://citeseer.ist.psu.edu/pereira93distributional.html
http://www-aig.jpl.nasa.gov/public/home/pauls/
http://www.cs.princeton.edu/~schapire/boost.html
http://www-stat.stanford.edu/~hastie/Papers/boost.ps
ftp://ftp.stat.berkeley.edu/pub/users/breiman/games.ps.Z
ftp://ftp.stat.berkeley.edu/pub/users/breiman/games.ps.Z
ftp://ftp.stat.berkeley.edu/pub/users/breiman/half%26half.ps.Z
http://research.microsoft.com/~minka/papers/erm.html
http://research.microsoft.com/~minka/papers/erm.html

Principal Component Analysis



Principle Component Analysis: A statistical technique used to
examine the interrelations among a set of variables in order
to identify the underlying structure of those variables. Also
called factor analysis.

It is @ non-parametric analysis and the answer is unique and
independent of any hypothesis about data distribution.

These two properties can be regarded as weaknesses as well as
strengths.

Since the technique is non-parametric, no prior knowledge
can be incorporated.

PCA data reduction often incurs a loss of information.



The assumptions of PCA:

1. Linearity

 Assumes the data set to be linear combinations of
the variables.

2. The importance of mean and covariance
* There is no guarantee that the directions of maximum
variance will contain good features for discrimination.

3. That large variances have important dynamics
* Assumes that components with larger variance
correspond to interesting dynamics and lower ones
correspond to noise.



Where regression determines a line of best fit to a data
set, factor analysis determines several orthogonal lines
of best fit to the data set.

Orthogonal: meaning “at right angles”. Actually the lines
are perpendicular to each other in n-dimensional space.



n-Dimensional Space: the variable sample space. There are as
many dimensions as there are variables, so in a data set with 4
variables the sample space is 4-dimensional.
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Components: a linear transformation that chooses a variable
system for the data set such that the greatest variance of the data
set comes to lie on the first axis (then called the principal
component), the second greatest variance on the second axis,

and soon...

Note that components are uncorrelated, since in the
sample space they are orthogonal to each other.
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Locations along each component (or eigenvector) are then
associated with values across all variables. This association
between the components and the original variables is called the
component’s eigenvalue.

In multivariate (multiple variable) space, the correlation between
the component and the original variables is called the component
loadings.

Component loadings: analogous to correlation coefficients,
squaring them give the amount of explained variation. Therefore
the component loadings tell us how much of the variation in a
variable is explained by the component.
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If we use this technique on a data set with a large number of

variables, we can compress the amount of explained variation to
just a few components.

What follows is an example of Principal Component Analysis using

canal town commodity production figures (percentage of total
production) for 1845.



The Pennsylvania Canal System
1845

Williamsport

Dunnsburg

Freeport Easton

Blairsville

Pittsburgh Hollidaysburg

New Hope
Johnstown )
Bristol

Kilometers Parkesburg

Philadelphia
0 10 20 50




Towns
Columbia
Middletown
Harrisburg
Newport
Lewistown
Hollidaysburg
Johnstown
Blairsville
Pittsburgh
Dunnsburg
Williamsport
Northumberland
Berwick
Easton

New Hope
Bristol
Philadelphia
Paoli
Parkesburg
Lancaster

Variables
Corn
Wheat
Flour
Whiskey
Groceries
Dry Goods



Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Sqguared Loadings
Component Total % of Variance | Cumulative % Total % of Variance | Cumulative % Total % of Variance | Cumulative %
1 2.533 42.211 42,211 2.533 42.211 42.211 1.887 31.452 31.452
2 1.565 26.084 68,295 1.565 26.084 68.295 1.880 31.328 62.780
3 1.504 25.073 93.368 1.504 25.073 93.368 1.835 30.587 93.368
4 174 2.901 96.269
5 119 1.988 98.257
6 .105 1.743 100.000

Extraction Method: Principal Component Analy sis.

In this case, 3 components contain 93.368% of the variation
of the 6 original variables. Note that there are as many
components as original input variables.

Component 1 explains 42.211% of the variation, component 2
explains 26.084%, and component 3 explains 25.073%.

The remaining 3 components explain only 6.632%.




A scree plot graphs the amount of variation explained by each component.
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Rotated Component Matrix (a)

Component
1 2 3
Corn -.065 .936 214
Wheat -.104 .952 -.057
Groceries .962 -.092 -.086
Dry Goods .963 -.074 -.092
Flour -.126 -.097 .954
Whiskey -.057 275 .927

Extraction Method: Principal Component Analy sis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 4 iterations.

Highest Component Loading
Component 1: Groceries and dry goods.
Component 2: Corn and wheat.

Component 3: Flour and whiskey.



Component Plot in Rotated Space
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Note how the variables that make up each component
fall close to each other in the 3-dimensional sample space.



What do these components mean (how do we interpret them)?

e Component 1 (groceries and dry goods) — these two items
are highly processed and value added.

e Component 2 (corn and wheat) — these two items are not
processed (raw) and have no value added.

e Component 3 (flour and whiskey) — these two items are
moderately processed and value added.

It appears that the components are indicators of either
the amount of processing or value adding (or both).



The most challenging part of PCA is interpreting the
components.

1. The higher the component loadings, the more important that
variable is to the component.

2. Combinations of positive and negative loadings are interpreted
as ‘mixed’.

3. The specific sign of the is not important.

4. ALWAYS use the ROTATED component matrix!!



Component score: the new variable value based on the

observation’s component loading and the standardized value of the
original variable, summed over all variables.

SCOf@k = E D” ij
where D; is the standardized value for observation i on variable j

and L is the loading of variable j on component k.

Examining the component scores for each town may give some
clues as to the interpretation of the components.



Component Score Box Plot

5—
Philadelphia
4 * Narthumberland
*
Eastan
*
3—
) i
Lewistown ancaster
o)
o}
U Bristol
o
B 1
L T
-1
I I '
Component 1 Component 2 Component 3




4.00000 4.00000
o Northumberland
Easton
o
3.00000- 3.00000-
o~
< 2.00000 200000+
c c
@ @
c c
2 2 s
5 . 5
O 100000 O 100000 g%
9 o
0.00000- 00 g Philadelphia 6 66065 0 Philadelphia
o
O o o [}
% o é} o @
(o]
-1.00000- -1.00000-
T T T T T T T T T T T T T T
-1.00000 0.00000 1.00000 200000 3.00000 4.00000 500000 -1.00000 0.00000 1.00000 200000 3.00000 4.00000 500000
Component 1 Component 1
4.00000
Easton
Easton, Philadelphi d )
aston liade Ia, dn -
) p V4
Northumberland are the .
© 200000
c
: g
only towns that load highly : 9
[-%
5
i o
. I & 1.00000 &
on a singile con lponent.
o Narthumberland
0.00000 o
OO o]
® o @
(o]
-1.00000-
T T T T T T
-1.00000 0.00000 1.00000 200000 3.00000 4.00000

Component 2



Scoring highly on a single component simply means that the
original variable values for these locations are overwhelmingly
explained by a single component.

In this case, it means that the variation among ALL of the
variables for Philadelphia (for example) is more completely
explained by a single component composed of groceries and
dry goods.

Rotated Component Matrif

Component
1 2 3
Corn -.065 .936 214
Wheat -.104 .952 -.057
Groceries .962 -.092 -.086
Dry Goods .963 -.074 -.092
Flour -.126 -.097 .954
Whiskey -.057 275 .927

Extraction Method: Principal Component Analy sis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 4 iterations.



Town Component Scores

Town
Columbia
Middletown
Harrisburg
Newport
Lewistown
Hollidaysburg
Johnstown
Blairsville
Pittsburgh
Dunnsburg
Williamsport
Northumberland
Berwick
Easton

New Hope
Bristol
Philadelphia
Paoli
Parkesburg
Lancaster

Component 1 Component 2 Component 3

‘0-47023 <— Middletown is a ‘mixed’

0.31989 -0.44216 -0.4436
-0.37101 -0.24531

-0.00974 -0.06105 0.32792
-0.38678 0.40935 IngJ%l
-0.33132 |1.27318| -0.52170
-0.44018 -0.49770 -0.59722
-0.44188 -0.48447 -0.63736
-0.42552 -0.38759 -0.51107
-0.13834 -0.75021 1.05942
-0.42728 0.03072 -0.73622
-0.28812 -0.47716 -0.62453
-0.00398 3.82169 0.09538
-0.36503 -0.46398 -0.60501
-0.02349 -0.00587 3.28970
-0.40354 -0.42291 -0.25891
0.60267 -0.32311 -0.50086
4.08309 -0.14799 -0.24733
-0.41174 -0.35103 -0.38109
-0.25890 0.05125 0.92910
-0.27880 -0.52566 1.46363

town because it loads on
all components equally.

<— Philly is a ‘processed
goods ‘town.



Component 1: Processed Goods

High PCA1 Loading
@ Low PCA1 Loading Williamsport

Dunnsburg

o Beach Haven

Northumberland

Easton
reapon Lewistown

Blairsville

Harrisburg
q Portsmouth

Pittsburgh

Hollidaysburg

Q Liverpool

Johnstown Parkesburg Paoli

Bristol

Columbia Lancaster Philadelphia

The green town were producers of processed goods, while the
red towns were consumers of those goods.




Component 2: Non-Processed Goods

High PCA2 Loading
@ Low PCA2 Loading

Williamsport

Dunnsburg

=

Lewistown

,~\’£wport

Beach Haven

Northumberland \/ Easton

Freeport

Blairsville

Pittsburgh Hollidaysburg Harrisburg
Johnstown Portsmouth . Liverpool
Paoli
Lancaster
: A/.\ Bristol

Parkesburg

Columbia “Philadelphia

The green town were producers of non-processed goods, while
the red towns were consumers of those goods.




Component 3: Partially Processed Goods

High PCA2 Loading

@ Low PCA2 Loading Williamsport
Dunnsburg
\/éh Haven

Northumberland Easton

Freeport Lewistown

Blairsville

" Pittsburgh

Hollidaysburg ‘ Harrisburg

Portsmouth Liverpool

Johnstown
Parkesburg

Bristol

Lancaster Philadelphia

Columbia

The green town were producers of partially processed goods,
while the red towns were consumers of those goods.




What information did PCA provide concerning the goods
exported by the canal towns?

e The goods fell into recognizable categories (highly processed,
moderately processed, not processed).

e A small number of towns were responsible for exporting
most of these goods.

e The location of these towns relative to the goods they
produced make sense.
e Industrial towns on the Columbia railroad exported
finished goods.
e Small farming towns on the canal exported produce.
e Midsize towns exported moderately processed
goods.



Without the use of Principal Component Analyses these associations
would be difficult to determine.

Principal Component Analyses is also used to remove correlation
among independent variables that are to be used in multivariate
regression analysis.

Correlation Matrix
Corn Wheat Groceries  DryGoods Flour Whiskey

Corn [ 1.000 812 -.163 -.160 108 450
Wheat | 812 1.000 -.183 -.157 -.096 198
_ Groceries | -.163 -.183 1.000 883 -.191 -.164
Correlation
DryGoods |  -.160 -.157 883 1.000 -.198 -.163
Flour | 108 -.096 -.191 -.198 1.000 806
Whiskey | 450 198 -.164 -.163 806 1.000
Correlation Note that PCA1 is highly correlated
Dry Goods Groceries  PCA 2 PCA3 ;
PCA 1 0.963 0.962 0.000 0.000 to dry goods and groceries, but

uncorrelated to PCA2 and PCA3.



Principal Components Analysis




Covariance

Variance and Covariance are a measure of the "spread” of a set
of points around their center of mass (mean)

Variance - measure of the deviation from the mean for points in
one dimension e.g. heights

Covariance as a measure of how much each of the dimensions
vary from the mean with respect to each other.

Covariance is measured between 2 dimensions to see if there is
a relationship between the 2 dimensions e.g. number of hours
studied & marks obtained.

The covariance between one dimension and itself is the variance



Covariance

covariance (X,Y) = =, (X; - X) (¥, - Y)
(n -1)

So, if you had a 3-dimensional data set (x,y,z), then you could
measure the covariance between the x and y dimensions, the y
and z dimensions, and the x and z dimensions. Measuring the
covariance between x and x , or y and y , or z and z would give
you the variance of the x , y and z dimensions respectively.



Covariance Matrix

* Representing Covariance between dimensions as a
matrix e.g. for 3 dimensions:

NVariances

— e
» Diagonal is the variances of x,y and z

» cov(x,y) = cov(y,x) hence matrix is symmetrical about
the diagonal

- N-dimensional data will result in NxN covariance
matrix



Covariance

* What is the interpretation of covariance
calculations?

e.g.: 2 dimensional data set

x: number of hours studied for a subject
y: marks obtained in that subject
covariance value is say: 104.53

what does this value mean?



Covariance examples

positive covariance negative covariance
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Covariance

Exact value is not as important as it's sign.

A positive value of covariance indicates both
dimensions increase or decrease together e.g. as the
number of hours studied increases, the marks in that
subject increase.

A negative value indicates while one increases the
other decreases, or vice-versa e.g. active social life
at PSU vs performance in CS depft.

- TIf covariance is zero: the two dimensions are

independent of each other e.g. heights of students vs
the marks obtained in a subject



Covariance

* Why bother with calculating covariance
when we could just plot the 2 values to
see their relationship?

Covariance calculations are used to find
relationships between dimensions in high
dimensional data sets (usually greater
than 3) where visualization is difficulft.



PCA

- principal components analysis (PCA) is a technique
that can be used to simplify a dataset

- It is a linear transformation that chooses a new

coordinate system for the data set such that

greatest variance by any projection of the data
set comes to lie on the first axis (then called the
first principal component),

the second greatest variance on the second axis,
and so on.

* PCA can be used for reducing dimensionality by
eliminating the later principal components.



Consider the fol
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If each component is stored in a byte,
we need 18 = 3 x 6 bytes
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PCA Toy Example

Looking closer, we can see that all the points are related
geometrically: they are all the same point, scaled by a
factor:

1 1 2 1 4 1
2| =1*| 2 |4)/=2*%2 8| =4*| 2
3 3 6 3] | 12 3
3 1 5 1 6 1
6| =3* 2 10| =5*| 2 120 =6*| 2
9 3| |15 3| |18 3




PCA Toy Example

1 1 2 1 4 1
2| =1*| 2 |4)/=2*%2 8| =4*| 2
3 3 6 3] | 12 3
3 1 5 1 6 1
6| =3* 2 10| =5*| 2 120 =6*| 2
9 3| |15 3| |18 3

They can be stored using only 9 bytes (50% savings!):
Store one point (3 bytes) + the multiplying constants (6 bytes)



Geometrical Interpretation:

View each point in 3D space.

- p3

pl/

But in this example, all the points happen to belong to a
line: a 1D subspace of the original 3D space.



Geometrical Interpretation:

Consider a new coordinate system where one of the axes
is along the direction of the line:

p3

/

pl/

In this coordinate system, every point has only one non-zero coordinate: we
only need to store the direction of the line (a 3 bytes image) and the non-
zero coordinate for each of the points (6 bytes).




Principal Component Analysis
(PCA)

» Given a set of points, how do we know
if they can be compressed like in the
previous example?

- The answer is to look into the
correlation between the points

- The tool for doing this is called PCA



PCA

By finding the eigenvalues and eigenvectors of the
covariance matrix, we find that the eigenvectors with
the largest eigenvalues correspond to the dimensions
that have the strongest correlation in the dataset.

This is the principal component.

PCA is a useful statistical technique that has found
application in:

- fields such as face recognition and image compression

- finding patterns in data of high dimension.



PCA Theorem

Let x; X, ... X, be a set of n N x 1 vectors and let x be their
average:

T | | T;1
1 1=T _
X — '/“U’I;Q }—( — ZCZQ
(/ . nZ:1 .
| LN L LN




PCA Theorem

Let X be ’rh_e N x h matrix with columns
X1 = X, Xp = X, Xp =X

X =|X{—X Xo0—X -+ Xp—X

Note: subtracting the mean is equivalent to translating
the coordinate system to the location of the mean.



PCA Theorem

Let Q = X X7 be the N x N matrix:

| (x1— X
Q=XX"=|x1-%X Xp—% -+ Xp—X| (x2 —X

(Xn—)_(
Notes:

1. Qs square
2. Qis symmetric

T
)T

)T

3. Q is the covariance matrix [aka scatter matrix]

4. Q can be very large (in vision, N is often the number of
pixels in an image!)




PCA Theorem

Theorem: _i=n
Each X; can be writtenas: X5 — X T Z 95:€4
i=1

where e, are the n eigenvectors of Q with non-zero
eigenvalues.

Notes:
1. The eigenvectors e, e, ... e, Span an efigenspace

2. eje, ..e,are N x 1 orthonormal vectors (directions in
N-Dimensional space)

3. The scalars g;; are the coordinates of x; in the space.

95: = (Xj —X).¢;



Using PCA to Compress Data

+ Expressing x in terms of e ... e, has not

changed the size of the data

* However, if the points are highly correlated
many of the coordinates of x will be zero or

closed to zero.

note: this means they lie ina
lower-dimensional linear subspace




Using PCA to Compress Data

+ Sort the eigenvectors e, according to
their eigenvalue:

A > Ao > .

-Assuming that N0 ife>k

1=k
*Then Xj N X + Z 9;i€i
1=1




PCA Example -STEP 1

http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

DATA:

X | Y
25| 24
05| 07
22| 2.9
19 2.2
31| 30
23| 27
2 16
1 1.1
15| 16
1.1 0.9

Criginal PCA data
4 ' /PCAdatadat’  +
Ir + N |
5 L
- this becomes the
Al . 1 new origin of the
data from now on
0
-1 . : :
1 0 1 2 3 4

Figure 3.1: PCA example data, original data on the left. data with the means subtracted
on the right, and a plot of the data



PCA Example -STEP 2

- Calculate the covariance matrix

cov = (.616555556 .615444444
615444444 716555556

» since the non-diagonal elements in this
covariance matrix are positive, we should

expect that both the x and y variable
increase together.



PCA Example -STEP 3

» Calculate the eigenvectors and eigenvalues
of the covariance matrix

eigenvalues =/.0490833989
~ 1.28402771 .
eigenvectors =|-.735178656 -.677873399
677873399 -735178656/

o



PCA Example -STEP 3

*eigenvectors are plotted

Mean adjusted data with eigenvectors overayed

S ] ohamdieigar v as diagonal dotted lines
.l \\ Coioscesa- raocezdos | on the plot.
AN Note they are
. \\ e i perpendicular to each
AN e other.
T N e ' *Note one of the
0 N eigenvectors goes through
RN the middle of the points,
T \\K ‘ like drawing a line of best
4L ++ ‘\\ _ fit. |
o N *The second eigenvector
15 — “\ . gives us the other, less
N S N important, pattern in the
I I data, that all the points

Figure 3.2: A plot of the normalised data (mean subtracted) with the eigenvectors of follow the malr? “ne’ but
the covariance matrix overlayed on top. are off to the side of the

main line by some
amount.



PCA Example -STEP 4

- Feature Vector

FeatureVector = (eig, eig, eigs ... eig,)
We can either form a feature vector with both of the
eigenvectors:

-.677873399 -.735178656
-.735178656 .677873399

or, we can choose to leave out the smaller, less
significan[ component and only have a single column:

- .677873399
- .73D5178656



PCA Example -STEP 5

* Deriving new data coordinates

FinalData = RowFeatureVector x RowZeroMeanData

RowFeatureVector is the matrix with the
eigenvectors in the columns transposed so that the
eigenvectors are now in the rows, with the most
significant eigenvector at the top

RowZeroMeanData is the mean-adjusted data
transposed, ie. the data items are in each

column, with each row holding a separate
dimension.

Note: his is essential Rotating the coordinate axes
so higher-variance axes come first.




PCA Example -STEP 5

Data transformed with 2 eigenvectors
2 T T T

"..-'doL'JI::-Ievecﬂ|'1;3I.-d;3t" .

\
[
i
L
n
i
L
1
=
n
o
=
o
—
s
on
[

Figure 3.3: The table of data by applying the PCA analysis using both eigenvectors,
and a plot of the new data points.



PCA Example : Approximation

» If we reduced the dimensionality,
obviously, when reconstructing the data
we would lose those dimensions we
chose to discard. In our example let us
assume that we considered only the x
dimension...



PCA Example : Final Approximation

Original PCA data Criginal data restored using only a single eigenvector
— T—. 4
[PCAdatadat”  + "..-'I-:u'ss;fplL|smean.-5;3t" +
+ * 3 B
+ +
F
+
5L +
+
+
1 -
+
0
_ e ] | ]
-1 0 1 2 3 4 -1 0 1 2 3 4

2D point cloud Approximation using
one eigenvector basis



Another way of thinking
about Principal component

» direction of maximum variance in the input
space

* happens to be same as the principal
eigenvector of the covariance matrix



One-dimensional projection

find projection
that maximizes
variance




Covariance to variance

- From the covariance, the variance of
any projection can be calculated.

* Let wbe a unit vector

<(wa)2 > — <wa>2 =w' Cw

= ZwiCl.jwj
]



Maximizing variance

» Principal eigenvector of C
- the one with the largest eigenvalue.

* T
w =argmaxw Cw

wiw =1

(O)= max w "Cw

wiw =1

*T %k
=w  Cw

max



Implementing PCA

* Need to find "first" k eigenvectors of Q:

Ca—%)T
Q=XX"=|x1-%X Xp—% -+ Xp—X| (Xz—:x)

G-

Q is N x N (Again, N could be the number of pixels in
an image. For a 256 x 256 image, N = 65536 I
Don't want to explicitly compute Ql!!!



Singular Value Decomposition
(SVD)

Any m X n matrix X can be written as the product of 3
matrices:

X =ubpv?!

Where:
» U is m x m and its columns are orthonormal vectors
* Vis n x nand its columns are orthonormal vectors
* D is m x n diagonal and its diagonal elements are called
the singular values of X, and are such that:
1,05, ..0,,0



SVD Properties
X =vupv?’

* The columns of U are the eigenvectors of XXT

* The columns of V are the eigenvectors of X7X

* The squares of the diagonal elements of D are the
eigenvalues of XXT and XX



Algebra of Principal ComponeAnalysis

> 1] 321
34 2.2 1.
Data. Y =|50 Centre each column on its medp= [y-y] = |[—0.2 —2.
76 1.8 3.
9 2 | 3.8-0.
. : . ) _ 1 . _ 18.2 1.
Covariance matrix (2 variables): S=—Y_'Y_=
n-1¢ ¢ |165.
Equation for eigenvalues and eigenvectorS of (S—=Ad) u =0
Eigenvalues:A; =9, A, =5 Matrix of eigenvalues:A = [2 (5)]
Matrix of eigenvectors: U = |0.8944-0.447
0.4472 0.894
Positions of the 5 objects in ordination space: F=[y-y]U
-1.0 -05 0.0 0.5 1.0
~3.2-1.6 3578 0 T
-2.2 1. -1.342 2.23 N
F=]-02-26 10'8944_ 0'447]3 = |-1.342-2.23 2 - A
= 10.4472 0.894 | ' “ ) ",
1.8 3. 0 0.89 3.130 2.23
| 3.8-0. | 3.130-2.23¢ v * - o
a7 3 5 Varl| 9
{I‘_v
4 -




Principal component analysis (PCA) 393
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Figure 9.2 Numerical example of principal component analysis. (a) Five objects are plotted with re
descriptorsy; andys,. (b) After centring the data, the objects are now plotted with resg
y,-y) and (y,-Y, , represented by dashed axes. (c) The objects are plotte
reference to principal axes | and Il, which are centred with respect to the scatter o
(d) The two systems of axes (b and c) can be superimposed after a rotatitdvbf 26
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Fig. 9.3 Numerical example from Fig. 9.2. Distance and correlation biplots are discu
Subsection 9.1.4(a) Distance biplot. The eigenvectors are scaled to lengtl
Inset: descriptors (matrixJ). Main graph: descriptors (matritd; arrows) an
objects (matriX; dots). The interpretation of the object-descriptor relationsh
not based on their proximity, but on orthogonal projections (dashed lines)
objects on the descriptor-axes or their extensioffig.Correlation biplot.
Descriptors (matrixUAL2; arrows) with a covariance angle of°36'. Object
(matrix G; dots). Projecting the objects orthogonally on a descriptor (dashec
reconstructs the values of the objects along that descriptors, to wi
multiplicative constant.

Use the following matrices to draw biplots
Distance biplot(scaling 1): objects E, variables U
Correlation biplot(scaling 2): objects & = FA~Y2 variables 2Ug.,= UAY?

These two projections respect the biplot rule, that the product of the two projecte:
matrices reconstruct the data

Distance biplotFU' = Y Correlation biplotG(UAY?) = Y



Data transformation

Transform physical variables Ecoloqgy) or characters (Taxonomy)

» Univariate distributions are not symmetrical

[1 Apply skewness-reduction transformation

Variables are not in the same physical units

izati i —Y - Yi = Ymin
0 Apply standardizatios, = ——  or ranging =

y Ymax™ Ymin

Multistate qualitative variables

[ In some cases, transform them to dummy (binary) variables

Transform community composition data Ecology)

(species presence-absence or abundance)

Reduce asymmetry of distributions

0 Apply logfy + c) transformation

Make community composition data suitable for Euclidean-based
ordination methods (PCA, RDA)

[J Use the chord, chi-square, or Hellinger transformations (Legendre
& Gallagher 2001)



Some uses of principal component analysis (PCA)

* Two-dimensional ordination of thabjects
- Sampling sites in ecology
- Individuals or taxa in taxonomy

[ A 2-dimensional ordination diagram is an interesting graphical
support for representing other properties of multivariate data, e.g.
clusters.

» Detect outliers or erroneous data in data tables

» Find groups oVariablesthat behave in the same way:
- Species in ecology

- Morphological/behavioural/molecular variables in taxonomy
» Simplify (collinear) data; remove noise

 Remove an identifiable component of variation

e.g., size factor in log-transformed morphological data



Algebra of Correspondendaalysis

_fi+—
i | [ 40] Pij =Tj/fes
Frequency _ r. 1 - |10 20 20] [40 7
data tabley ~ L'ii _ 12 12 1;’ 22 Pis =/ fpy
L - Psj = f4j / Tas
f,;] = [35 30 35] 100=1,

Matrix @ = [q,] = [E’ﬂ___ﬂﬁﬂ} _ (O -Ep /Ry

A/pi+p+j ) ﬁ

—0.10690-0.05774 0.1603
Matrix Q =|-0.06429 0.13887- 0.0642
0.21129- 0.09129-0.1266

Cross-product matrix: QQ $-0.02204 0.03095- 0.0064!

0.06020- 0.02204-0.0398
—0.03980-0.00661 0.0459

Compute eigenvalues and eigenvectorg@) : Q'Q Ad)yu =0
Eigenvaluesi, = 0.096 1, = 0.041 Matrix of eigenvaluegx = {0'096 0 J
0 0.04

There are never more than k = min(r — 1, ¢ — 1) eigenvalues > 0 in CA

| 0.78016 0.2033¢
Matrix of eigenvectors oQ'Q(CXC) : U(ka) = 1-0.20383-0.8114

—0.59144 0.5479

Matrix of eigenvectors oQ Q' ;) : U(rxk) =QUA 2= |_0.13043-0.7956
| 0.83349 0.2351¢

_0.53693 0.55831



Compute matriceB andV for scaling 1 biplot, an¥ arfd  for scaling 2 biplot:

CAbiplot CA biplot
scaing typel scaling type 2
o} ] K1
A
1 _| Q ]
= Lisp3 - *Site_1
v [7e) .
<) . Jsp.1 o e Site_3
e Site_1 . 0Sp.3
o e Site 3 a p.
@ o = e 24 CISp.1
> o ><
Q Y D 9 7
o | 3
:.3 _ [sp.2 2 | e Site_2
o =)
o ] ] ] ] ] ] ] | ﬁq - ] ] ] ] ] ] |
-15 -10 -05 00 05 10 15 20 -10 05 00 05 10 15 20
CA axis 1 CA axis 1

Calculation details
Compute matrice¥, V,F, andF used in the ordination biplots:
Vexky = D(ps)H2U where pj = f,;/f,.
V i =D (Pir) 20 where p; = fi/f..,
Fruky = VA2
F oo = VA2
Biplot, scaling type 1: plof for sites,V for species:

 This projection preserves the chi-square distance among the sites.

» The sites are at the centroids (barycentres) of the species.

Biplot, scaling type 2: ploV for sitef,  for species:
 This projection preserves the chi-square distance among the species.

» The species are at the centroids (barycentres) of the sites.



Discriminate Analysis

Outline

* Introduction
* Linear Discriminant Analysis
* Examples




Introduction

* What is Discriminant Analysis?

* Statistical technique to classify objects into mutually exclusive
and exhaustive groups based on a set of measurable object's
features

Introduction

* Purpose of Discriminant Analysis

* To classify objects (people, customers, things, etc.) into one of
two or more groups based on a set of features that describe the
objects (e.g. gender, age, income, weight, preference score, etc.

).
* Two things to check

* Which set of features can best determine group membership of
the object? Feature Selection

* What is the classification rule or model to best separate those
groups? Classification




Outline

* Introduction
* Linear Discriminant Analysis

* Examples

Linear Discriminant Analysis (LDA)

* Linear discriminant analysis (LDA),
* Also called Fisher's linear discriminant
* Methods used in statistics and machine learning to find the
linear combination of features which
* best separate two or more classes of object or event.
* The resulting combination may be used as a linear classifier, or,

more commonly, for dimensionality reduction before later
classification.




Dimensionality Reduction

* Curse of dimensionality:

* Problem caused by higher the dimension of the feature vectors
¢ Data sparsity

A

* Undertrained classifier

performance

dimensionality '
* Goal:

* Reduce dimension of feature vectors without loss of information

Linear Discriminant Analysis (LDA)

* Goal:

* Try to optimize class separability

* Also known as Fisher”s discriminant analysis




Linear Discriminant Analysis (LDA)

* Problem statement

* Assign class category (or the group, class label): “good” and “bad” for each
product

¢ Class category is also called dependent variable.
* Based on Features
* Each measurement on the product is called features that describe the object
¢ itis also called independent variable.
* Dependent variable (Y) is the group
* The dependent variable is always category (nominal scale) variable
* Independent variables (X) are the object features that might
describe the group

* independent variables can be any measurement scale (i.e. nominal, ordinal,
interval or ratio)

Linear Discriminant Analysis (LDA)

* Linear Discriminant Analysis (LDA)
* Assume that the groups are linearly separable
* Use linear discriminant model (LDA)

* What is Linearly separable?

* It suggests that the groups can be separated by a linear
combination of features that describe the objects




Linear Discriminant Analysis (LDA)

* PCA vs LDA

* PCA is trying to find the strongest correlation in the dataset
* LDA is trying to optimize class separability

.
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Linear Discriminant Analysis (LDA)

* Goal of LDA: try to maximize class seperability




Different Approaches to LDA

* Class-dependent transformation

* Maximizing the ratio of between class variance to within class
variance.

* Involving using two optimizing criteria for transforming the data
sets independently
* Class-independent transformation
* Maximizing the ratio of overall variance to within class variance

* Only using one optimizing criterion to transform the data sets
and hence all data points irrespective of their class identity are
transformed using this transform.

Numerical Example

* Given a two-class problem.
* Input: two sets of 2-D data points

11 912 by by,

dry 4o by by
setl = set?2 =

_aml amZ_ _bm'l me_

Class 1 Class 2




Numerical Example

* Step 1

* Compute the mean of each data set and mean of entire data set.

Data Points in Class 1 Mean of Set 1 /Jl n*1 column vector

Data Points in Class 2 Mean of Set 2 ,le n*1 column vector

Data Points in both

i *
Class 1 and Class 2 Mean of Entire Data [/; n*1 column vector

My = PpXHp TPy XHy

Where n is the number of dimension. In our
case, it is equal to 2

Numerical Example

* Step 2
 Compute the Between Class Scatter Matrix S , and Within Class Scatter
Matrix S w

Within Class Scatter Matrix S = ij X (cov)
J
where D i is the prior probabilities of the jth class

T
and cov, = (xj - ”j)(xj - uj) is covariance matrix of the jt" class (set j)

T
Between Class Scatter Matrix 5, = Z(uj —H3) X (u.j — )
J

where [l; is the mean of the entire data
and /J j is the mean of the jth class (set j)




Numerical Example

* Step3
* FEigenvectors computation
Optimizing Criterion
Class-dependent transformation: criterion . = inv(cov.) X Sb
J

Obtain the eigenvectors from

Maximizing the ratio of between class

variance to within class variance. Eigenyectors Transform _,'
Involving using two optimizing criteria

for transforming the data sets

independently

. . Optimizing Criterion
Class-independent transformation: criterion = I'm-'(Sw) > Sb

Obtain the eigenvectors from

Maximizing the ratio of overall variance
to within class variance

Eigenvectors Transform_spec

Only using one optimizing criterion to
transform the data sets and hence all
data points irrespective of their class
identity are transformed using this
transform.

Numerical Example

* Step 4
* Transformed matrix calculation
For the class dependent LDA,
. T .
transformed set j = transform j X set j

Where “transform_j” is composed of eigenvectors from
criterion. = inv(cov.) X 8§
J ( J) b

For the class independent LDA,

T T
transformed set = transform_spec” X data_set
Where “transform_spec” is composed of eigenvectors from

criterion = inv(S, ) XSy




Numerical Example

* Step5

* Euclidean distance calculate
. T
dist_n = (fransform_n_spec) Xx—[ .

where /un trans is the mean of the transformed data set

n is the class index

X is the test vector

For nclasses, n Euclidean distances are obtained for each test point

Numerical Example

* Step 6
* C(Classification result is based on the smallest Euclidean distance among the n
distances classifiers the test vector a belonging to class

10



Extension to Multiple Classes

* Between Class Scatter Matrix

K
S, = Zpk (4, — )4, _ﬁ)f

k=1
with : K :number of classes
N, .. . .
P =% (fraction of data belonging to class k)
2N
=1
1 &
M = N Z X, (mean vector of class k)
K i=l

1 :mean of all vectors

Extension to Multiple Classes

* Within Class Scatter Matrix

K
S, = z P
k=1
with
1 & : : |
X, = N—Z (X, -4, )X, -,)" (covariance matrix of classk)
k i=l

11



Extension to Multiple Classes

« Maximize class separability
» Keep variance of all classes roughly constant
> optimization problem with constraint

Solution

Sbé; — Z’széz

* Questions?

12



Introduction

Linear Discriminant Analysis (LDA) is most commonly useddasensionality reduction technique in the pre-
processing step for pattern-classification and machine learningatppls. The goal is to project a dataset onto a
lower-dimensional space with good class-separghititorder avoid overfitting (“curse of dimensionality’’) and
also reduce computational costs.

Ronald A. Fisher formulated the Linear Discriminant in @98Bhe Use of Multiple Measurements in Taxonomic
Problems), and it also has some practical uses as classifier.igihaldrinear discriminant was described for a 2-
class problem, and it was then later generalized as “multi-class Linear Discriminant Analysis” or “Multiple
Discriminant Analysis” by C. R. Rao in 1948 (The utilization of multiple measurements in problems ofdgical
classification)

The general LDA approach is very similar to a Principal Component Analys (for more information about
the PCA, see the previous article Implementing a Principal Component Analysi®CA) in Python step by
step), but in addition to finding the component axes that maximize the vane of our data (PCA), we are
additionally interested in the axes that maximize the separation between multiple classes (LDA

So, in a nutshell, often the goal of an LDA is to projet@aiure space (a dataset n-dimensional samples) onto a
smaller subspace k

(where kn—1) while maintaining the class-discriminatory information.

In general, dimensionality reduction does not only help reducing compuaiatmsts for a given classification
task, but it can also be helpfuldooid overfitting by minimizing the error in parameter estimation (“curse of
dimensionality™).


http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.1936.tb02137.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.1936.tb02137.x/abstract
http://www.jstor.org/stable/2983775
http://www.jstor.org/stable/2983775
http://sebastianraschka.com/Articles/2014_pca_step_by_step.html
http://sebastianraschka.com/Articles/2014_pca_step_by_step.html

Principal Component Analysis vs. Linear Discriminant Analysis

Both Linear Discriminant Analysis (LDA) and Principal Compan@malysis (PCA) are linear transformation
techniques that are commonly used for dimensionality reduction. PCA can be described as an “unsupervised”
algorithm, since it “ignores” class labels and its goal is to find the directions (the so-called principal components)
that maximize the van®e in a dataset. In contrast to PCA, LDA is “supervised” and computes the directions
(“linear discriminants’) that will represent the axes that that maximize the separation between multiple classes.

Although it might sound intuitive that LDA is superim PCA for a multi-class classification task where tleas<|
labels are known, this might not always the case.
For example, comparisons between classification accuracies foe meeggnition after using PCA or LDA show
that PCA tends to outperform LDA if the number of samples @asadk relatively small (PCA vs. LDA, A.M.
Martinez et al., 2001). In practice, it is also not uncommon édoosh LDA and PCA in combination: E.g., PCA
for dimensionality reduction followed by an LDA.


http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=908974

PCA: LDA:

component axes that maximizing the component
maximize the variance axes for class-separation
bad projection /e‘ xx Xxx v :x
/ xx‘*x""xi.xx
) x);j;x (\4 xxxxxx )cxx xx

good projection; separates classes well



What is a “good” feature subspace?
Let’s assume that our goal is to reduce the dimensions of a d

-dimensional dataset by projecting it onto a (k)-dimeraisnbspace (where k<d). So, how do we know what size
we should choose for k (k

= the number of dimensions of the new feature subspace), and haw kinow if we have a feature space that
represents our data “well”?

Later, we will compute eigenvectors (the components) from otar skt and collect them in a so-called scatter-
matrices (.,e., the in-between-class scatter matrix and  wilhgsc scatter  matrix).
Each of these eigenvectors is associated with an eigenvalue, which tells us about the “length” or “magnitude” of

the eigenvectors.

If we would observe that all eigenvalues have a similar magnitben this may be a good indicator that our data
is already projected on a “good” feature space.

And in the other scenario, if some of the eigenvalues are much lamger than others, we might be interested in

keeping only those eigenvectors with the highest eigaesakince they contain more information about our data
distribution. Vice versa, eigenvalues that are close to 0 aremfessative and we might consider dropping those

for constructing the new feature subspace.



Summarizing the LDA approach in 5 steps

Listed below are the 5 general steps for performing a linear disennanalysis; we will explore them in more
detail in the following sections.

1.Compute theal -dimensional mean vectors for the different classes from the
dataset.

2. Compute the scatter matrices (in-between-class and within-class scatter
matrix).

3. Compute the eigenvectorsi(e2,..ed and corresponding eigenvalues
(11,2,...Ad) for the scatter matrices.

4. Sort the eigenvectors by decreasing eigenvalues and cheagnvectors
with the largest eigenvalues to formdak dimensional matrixw (where
every column represents an eigenvector).

5. Use thisdxk eigenvector matrix to transform the samples onto the new
subspace. This can be summarized by the matrix multiplicaexw
(whereX is anxd-dimensional matrix representing thsamples, angy are
the transformedxk-dimensional samples in the new subspace).



Principal Component Analysis
and Linear Discriminant
Analysis for Feature Reduction



Outline of lecture

What is feature reduction?
Why feature reduction?

Feature reduction algorithms
- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)



Feature reduction refers to the mapping of the original high-
dimensional data onto a lower-dimensional space.

- Criterion for feature reduction can be different based on different
problem settings.
Unsupervised setting: minimize the information loss
Supervised setting: maximize the class discrimination

Given a set of data points of p variables ~ X;, X5, **, X,
Compute the linear transformation (projection)

G “‘?P:x Y y G'x P(p d)



Original data

What is fe




Feature reduction
- All original features are used

- The transformed features are linear combinations of the original
features.

Feature selection
- Only a subset of the original features are used.

Continuous versus discrete



Outline of lecture

What is feature reduction?
Why feature reduction?

Feature reduction algorithms
- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)



Most machine learning and data mining techniques may
not be effective for high-dimensional data
- Curse of Dimensionality

- Query accuracy and efficiency degrade rapidly as the dimension
Increases.

The intrinsic dimension may be small.

- For example, the number of genes responsible for a certain type
of disease may be small.



Visualization: projection of high-dimensional data onto
2D or 3D.

Data compression: efficient storage and retrieval.

Noise removal: positive effect on query accuracy.



Face recognition
Handwritten digit recognition
Text mining

Image retrieval

Microarray data analysis
Protein classification



: Gene expression pattern images
Gene expression



High-dimensional data in computer vision

f-ﬁ-:r'-r-ﬁ'-t-
m-n-l.-!w
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Face images Handwritten digits




Outline of lecture

What is feature reduction?
Why feature reduction?

Feature reduction algorithms
- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)



Unsupervised

- Latent Semantic Indexing (LSI): truncated SVD
- Independent Component Analysis (ICA)

- Principal Component Analysis (PCA)

- Canonical Correlation Analysis (CCA)

Supervised
- Linear Discriminant Analysis (LDA)

Semi-supervised
- Research topic



Principal component analysis (PCA)

- Reduce the dimensionality of a data set by finding a new set of
variables, smaller than the original set of variables

- Retains most of the sample's information.
- Useful for the compression and classification of data.

By information we mean the variation present in the sample,
given by the correlations between the original variables.

- The new variables, called principal components (PCs), are
uncorrelated, and are ordered by the fraction of the total information
each retains.



X xX

X, x
<

o

—

the Ist PCZ, 1s a minimum distance fitto a line m X space

the 2nd PCZ, 1s a minimum distance fit to a line in the
plane perpendicular to the 1st PC

PCs are a series of linear least squares fits to a sample,
each orthogonal to all the previous.



Geometric picture of principal components (PCs)



Geometric picture of principal components (PCs)

2



Geometric picture of principal components (PCs)

\



Given a sample of n observations on a vector of p variables

d
xl,xz,ooo,xn

define the first principal component of the sample
by the linear transformation

d

T :
Z, aXx, a,x;, j L1,2,---,n

i1

where the vector a (all s Urys7 775 dy 1)

X (X5 X, Xy)

is chosen such that Val‘[Zl] 1S maximum.



To find al first note that

~ | ~ N
2 T T
var[z,] E((z, z)) = ax, aXx
n ;i

| ~ @ ~ ET

m g x xXx x a aSa

n ;i

h ] " ~ o ~ T
whete - § m  x. X X X

n
1s the covariance matrix.
m ] 7 .
x m x 1s the mean.
n ;i



To find (;that maximizes var|z, | subject to alT a, 1

Let A be a Lagrange multiplier

L a Sal~ (a, al~ 1)
/. Sazl~ a 0
4

(S I)a, 0
therefore (I, 1s an eigenvector of S

corresponding to the largest eigenvalue



We find that @, 1s also an eigenvector of S

whose eigenvalue 1s the second largest.

2

In general

var[z,] a,Sa,

* The kth largest eigenvalue of S 1s the variance of the £th PC.

 The kth PC Z; retains the kth greatest fraction of the variation
in the sample.



Main steps for computing PCs
- Form the covariance matrix S.

- Compute its eigenvectors: d; .,

P
- The first p eigenvectors &; ; | form the p PCs.

- The transformation G consists of the p PCs:

G la.a,,,a,]



PCA for image compression

v
|
L

p=1 p= p= p=8

Original

p=100 Image




Outline of lecture

What is feature reduction?
Why feature reduction?

Feature reduction algorithms
- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)



First applied by M. Barnard at the suggestion of
R. A. Fisher (1936), Fisher linear discriminant
analysis (FLDA):

Dimension reduction

- Finds linear combinations of the features X=X1,...,Xd with
large ratios of between-groups to within-groups sums of
squares - discriminant variables;

Classification

- Predicts the class of an observation X by the class whose
mean vector is closest to X in terms of the discriminant
variables



Is PCA a good criterion for classification?

Data variation determines the
projection direction

What's missing?
- Class information




What is a gopd projection?

Similarly, what is a good
criterion?
- Separating different classes




What class information may be useful?

Between-class distance

- Distance between the centroids of
different classes

— Between-class distance



What class information may be useful?

!

Between-class distance

- Distance between the centroids of
different classes

Within-class distance G

- Accumulated distance of an instance to
the centroid of its class

'

— Within-class distance



Linear discriminant analysis

Linear discriminant analysis (LDA)
finds most discriminant projection by

maximizing between-class distance O @9
and minimizing within-class distance
o0 o°
°O @
@ @ 0
® o’
@



Linear discriminant analysis

Linear discriminant analysis (LDA)
finds most discriminant projection by
maximizing between-class distance
and minimizing within-class distance




Training data from different from 1, 2, ..., k

/ Al A2 AN

Data matrix



c; is the centroid of ith class

Betwee n—CI aSS Scatte r c i~s the centroid of all classes

. o e PN
Sb Hbe Hb e e o
N P2
Within-class scatter il 1 =)
T HW ® O [ J
SW HWHW
Properties:

Between-class distance = trace of between-class scatter (l.e., the
summation of diagonal elements of the scatter)

Within-class distance = trace of within-class scatter



Discriminant criterion in mathematical formulation

traces GTSi G :
arg max

¢ trace(G'S G)
A

- Between-class scatter matrix S
w

- Within-class scatter matrix
1
The optimal transformatior is diven by solving a generalized
eigenvalue problem



A test data point h




* Face recognition

- Belhumeour et al., PAMI'97

* Image retrieval

- Swets and Weng, PAMI'96

- Gene expression data analysis

- Dudoit et al., JASA'02; Ye et al., TCBB’04
 Protein expression data analysis

Lilien et al., Comp. Bio.’03

* Text mining

- Park et al., SIMAX'03: Ye et al., PAMI'04
* Medical image analysis

- Dundar, SDM'05



S, Is required to be nonsingular.

- Singularity or undersampled problem (when n<d)

- Example: gene expression data (d is around few
thousands and n is around few hundreds), images,
text documents

Approaches

- PCA+LDA (PCA: Principal Component Analysis)
- Regularized LDA:

- Uncorrelated LDA

- Orthogonal LDA



Feature reduction is an important pre-processing step in
many applications.

Unsupervised versus supervised
- PCA and LDA

Research problems:

- Semi-supervised feature reduction

- Nonlinear feature reduction

- Determination of the reduced dimension in PCA



(@) (b)

()
-

Computational and theoretical issues in
machine learning and data mining

- Dimensionality reduction

- Clustering and classification
- Semi-supervised learning

- Kernel methods

Their applications to bioinformatics
- Expression pattern images
- Microarray gene expression data

Protien sequences and structures

Project:
Machine learning approaches for
biological image informatics

(a-e) Series of five embryos stained with a probe (bgm)
(f-j) Series of five embryos stained with a probe
(CG4829)

Are there any other expression patterns that are similar to the pattern | have
observed?

Which genes show extensive overlap in expression patterns?

What is the extent and location of the overlap between gene expression
patterns?

Is there a change in the expression pattern of a gene when another gene’s
expression is altered?

To answer the above questions, investigators generally rely on
their own, a collaborator’s, or senior mentor’s knowledge, which
has been gained by following the published literature over many
years or even decades. It does not scale to enormous data.

We propose to develop computational approaches for
answering these questions automatically.



Nearest Neighbor
Algorithm



Overview

' Instance-Based Learning

Comparison of Eager and Instance-Based Learning

* Instance Distances for Instance-Based Learning

* Nearest Neighbor (NN) Algorithm

 Advantages and Disadvantages of the NN algorithm

* Approaches to overcome the Disadvantages of the NN
algorithm

- Combining Eager and Instance-Based Learning



Instance-Based Learning

- Learning = storing all training
instances
- Classification = an 1nstance gets a

classification equal to the classification
of the nearest 1nstances to the instance.



Different Learning Methods

Eager Learning

- Learning = acquiring explicit description of the target concepts on the
whole training set;

- Classification = an instance gets a classification using the explicit
description of the target concepts.

Instance-Based Learning (Lazy Learning)

- Learning = storing all training instances

- Classification = an instance gets a classification equal to the classification
of the nearest instances to the instance.



Different Learning Methods

* Eager Learning

Any random movement
g =>]It's a mouse
!



Instance-Based Learning

o®oeo Its very similar to a
o ‘ @ Desktop!!
‘L $




Nearest-Neighbor Algorithm (NN)

The Features of the Task of the NN Algorithm:

the instance language Li 1s a 1-CNF' language with a set 4
with n attributes a/, a2, ... an. The domain of each attribute
ai, can be discrete or continuous.

an instance x 1s represented as < al(x), a2(x), ... an(x) >,
where ai(x) 1s the value of the attribute ai for the instance x;

the concepts to be learned can be:
- discrete. In this case we learn discrete function f(x) and the co-
domain C of the function consists of the concepts ¢ to be learned.
- continuous. In this case we learn continuous function f(x) and the

co-domain C of the function consists of the concepts ¢ to be
learned.



Distance Functions

The distance functions are composed from difference metrics da w.r.t. attributes a
defined for each two instances xi and xj.

If the attribute a 1s numerical, then :

d (x.x,) eamien]

If the attribute a 1s discrete, then : range,

0,1f a(x;) a(x;)

d (x:.x;
al¥; J) 1, otherwise.



Distance Functions

The main distance function for determining nearest neighbors is the
Euclidean distance:

d(xl’,xj')




k-Nearest-Neighbor Algorithm

The case of discrete set of classes.
.. Take the instance x to be classified
». Find k nearest neighbors of x in the training data.

. Determine the class ¢ of the majority of the instances
among the k nearest neighbors.

.. Return the class ¢ as the classification of x.



Classification & Decision Boundaries

el

1-nn: q1 is positive 1-nn:
5-nn: g1 is classified as negative



Nearest Neighbor classification

Given:
Given a labeled sample of n feature vectors ( call X)

A distance measure (say the Euclidian Distance)

To find:

The class label of a given feature vector x which is not in X




Nearest Neighbor classification
(contd.)

The NN rule:

Find the point y in X which is nearest to x

Assign the label of y to x




Nearest Neighbor classification
(contd.)

This rule allows us to partition the feature space into cells consisting of all points
closer to a given training point x

All points in such cells are labeled by the class of the training point. This
partitioning is called a Voronoi Tesselation




Nearest Neighbor classification (contd.)




k-Nearest-Neighbor Algorithm

The case of continuous set of classes.
.. Take the instance x to be classified
». Find k nearest neighbors of x in the training data.

.. Return the average of the classes of the k& nearest
neighbors as the classification of x.



Distance Weighted
Nearest-Neighbor Algorithm

The case of discrete set of classes.
.. Take the instance x to be classified

».  Determine for each class ¢ the sum  b. m
. Return the class ¢ with the greater Sc. L



Advantages of the NN Algorithm

- the NN algorithm can estimate complex target concepts
locally and differently for each new instance to be
classified;

* the NN algorithm provides good generalisation accuracy
on many domains;

* the NN algorithm learns very quickly;
* the NN algorithm is robust to noisy training data;

the NN algorithm 1s intuitive and easy to understand
which facilitates implementation and modification.



Disadvantages of the NN Algorithm

the NN algorithm has large storage requirements
because 1t has to store all the data;

the NN algorithm 1s slow during instance classification
because all the training instances have to be visited;

the accuracy of the NN algorithm degrades with
increase of noise in the training data;

the accuracy of the NN algorithm degrades with
increase of irrelevant attributes.



Classification
K-nearest neighbor
classifier
Nalve Bayes
Logistic Regression

N 4 NI s« _  _ ©nNBAB”2 220



NEAREST NEIGHBOR
CLASSIFICATION




Instance-Based Classifiers

Set of Stored Cases

Atrl

AtrN

Class

A

T QO »| O W ®

Store the training records

Use training records to
predict the class label of
unseen cases

Unseen Case

Atrl | | AtrN




Instance Based Classifiers

Examples:

Rote-learner

Memorizes entire training data and performs classification only if
attributes of record match one of the training examples exactly

Nearest neighbor

Uses k “closest” points (nearest neighbors) for performing
classification



Nearest Neighbor Classifiers

Basic idea:

If it walks like a duck, quacks like a duck, then it’s

probably a duck-—..
...... ~ CO m p u te
?Q \‘/ Distance Test
% Record
Training ., N . Choose k of the
Records ™. ~— . “nearest" records

.



Nearest-Neighbor Classifiers

Unknown record

Requires three things
— The set of stored records

— Distance Metric to compute
distance between records

— The value of k, the number of
nearest neighbors to retrieve

To classify an unknown record:

— Compute distance to other
training records

— ldentify k nearest neighbors

— Use class labels of nearest
neighbors to determine the
class label of unknown record
(e.g., by taking majority vote)



Definition of Nearest Neighbor

[ | I [ |
| | | | |
[ | | | |
— — [ - — - [ —
‘ﬂ--..
=F ou"-'~~ + 'O ‘e +
o \‘ I — ‘l [} — )
| []
I‘ X . X . ! X :
K 4 " . ’ . e
- + " . + “ .
+ * Q.."¢'
+ + = - + -

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points
that have the k smallest distance to x



1 nearest-neighbor

Voronoi Diagram defines the classification boundary




Nearest Neighbor Classification

Compute distance between two points:

Euclidean distance

d(p,q) J (p, q)

Determine the class from nearest neighbor list

take the majority vote of class labels among the k-
nearest neighbors

Weigh the vote according to distance

waiaht factor w = 1/d42



Nearest Neighbor Classification...

* Choosing the value of k:
* If k is too small, sensitive to noise points

* If k is too large, neighborhood may include points from

other classes - e, b _
" g = T ‘ +
L
¢ - - +x++ -
& 5
+ - - -
- - +




Nearest Neighbor Classification...

Scaling issues

Attributes may have to be scaled to prevent distance
measures from being dominated by one of the attributes

Example:
height of a person may vary from 1.5m to 1.8m
weight of a person may vary from 90Ib to 300Ib

income of a person may vary from $10K to $1M



Nearest Neighbor Classification...

Problem with Euclidean measure:

High dimensional data

curse of dimensionality

Can produce counter-intuitive results

111111111110 100000000000
VS
011111111111 000000000001
d =1.4142 d =1.4142

¢ Solution: Normalize the vectors to unit length



Nearest neighbor Classification...

K-NN classifiers are lazy learners
It does not build models explicitly

Unlike eager learners such as decision tree induction
and rule-based systems

Classifying unknown records are relatively
expensive

Naive algorithm: O(n)
Need for structures to retrieve nearest neighbors fast.

The Nearest Neighbor Search problem.



Nearest Neighbor Search

Two-dimensional kd-trees

A data structure for answering nearest neighbor queries
in R2

kd-tree construction algorithm

Select the x or y dimension (alternating between the
two)

Partition the space into two with a line passing from the
median point

nAIAAAL AR e o B II‘A:‘.AI" :-A LIAA LI.IA IAAIQL:‘:AIAA P— IA-AA- Pp— LIAAI‘A



-
Nearest Neighbor Search
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2-dimensional kd-trees



-
Nearest Neighbor Search
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2-dimensional kd-trees



-
Nearest Neighbor Search
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2-dimensional kd-trees



-
Nearest Neighbor Search
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2-dimensional kd-trees



-
Nearest Neighbor Search
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2-dimensional kd-trees



-
Nearest Neighbor Search

2-dimensional kd-trees

4 ? PQ-
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-
Nearest Neighbor Search

2-dimensional kd-trees

region(u) — all the black points in the subtree of u

ty
L
. £s
. L
L 1 [ ]
L = -
region(v) s




-
Nearest Neighbor Search

2-dimensional kd-trees

A binary tree:
Size O(n)
Depth O(logn)
Construction time O(nlogn)
Query time: worst case O(n), but for many cases O(logn)

Generalizes to d dimensions

Example of Binary Space Partitioning



SUPPORT VECTOR MACHINES




-
Support Vector Machines

O
O O
O
O
O
= O
O
|
|
O
|
| |

* Find a linear hyperplane (decision boundary) that will separate the data



-
Support Vector Machines

B1

O
o O
O
O
O
|
O
O
|
N
|
|
| |

* One Possible Solution



Support Vector Machines
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* Another possible solution




Support Vector Machines
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* Other possible solutions



-
Support Vector Machines

B,

O
O O
O
O
B, — __ O
i O
B N @2 -
H
|
|
|
| |

- Which one is better? B1 or B2?

* How do you define better?



-
Support Vector Machines

B1
O
O O
O
O
B, -
CTERE R O
= . b22
O
O .
. mar . -,....b11
O — °'
b12

* Find hyperplane maximizes the margin => B1 is better than B2



Support Vector Machines

w x b 1

- O
H . /
] o
....b12
Margin &



Support Vector Machines

* We want to maximize: Margin é
2
L(w) %

* Which is equivalent to minimizing:

* But subjected to the following constraints:

* This is a constrained optimization problem



Support Vector Machines

*What if the problem is not linearly separable?




Support Vector Machines

*What if the problem is not linearly separable?




Support Vector Machines

*What if the problem is not linearly separable?

* Introduce slack variables

* Need to minimize: ) v
W
L(w) % C ,

I
1

- Subject to: 8



Nonlinear Support Vector Machines

*What if decision boundary is not linear?

12

10+




Nonlinear Support Vector Machines

* Transform data into higher dimensional space

x 10"

4
(X, +X,)

L o a4 N W B OO N o
11— "1 —/""71 —/"""1 /71 171




LOGISTIC REGRESSION




Classification via regression

Instead of predicting the class of an record we
want to predict the probability of the class given
the record

The problem of predicting continuous values is
called regression problem

General approach: find a continuous function that
models the continuous points.



-
Example: Linear regression

20 10 ' 10 20 30 40 50 60



Classification via regression

* Assume a linear classification boundary




-
Logistic Regression

The logistic function 1

O
on




Logistic Regression

Produces a probability estimate for the class
membership which is often very useful.

The weights can be useful for understanding the
feature importance.

Works for relatively large datasets

Fast to apply.



NAIVE BAYES CLASSIFIER




Bayes Classifier

A probabilistic framework for solving classification
problems

A, C random variables
Joint probability: Pr(A=a,C=c)
Conditional probability: Pr(C=c | A=a)

Relationship between joint and conditional

orodakiity didtutibhs™(4) - Pr(4]C)  Pr(C)
P(C| 4) P:A‘C:P:C:

P(4)



Example of Bayes Theorem

Given:
A doctor knows that meningitis causes stiff neck 50% of the time
Prior probability of any patient having meningitis is 1/50,000
Prior probability of any patient having stiff neck is 1/20

If a patient has stiff neck, what’s the probability
he/she has meningitis?

P(M | S) P(S|M)P(M) 0.5 1/50000 0.0002

P(S) 1/20



Bayesian Classifiers

Consider each attribute and class label as random
variables

Given a record with attributes (A1, A2,...,An)

Goal is to predict class C

Specifically, we want to find the value of C that maximizes
P(C| A1, A2,...,An)

Can we estimate P(C| A1, A2,...,An ) directly from
data?



Bayesian Classifiers

Approach:

compute the posterior probability P(C | A1, A2, ..., An) for
all values of C using the Bayes theorem

P(C|AA...4) P‘AA...A ‘C:P‘C:

P(AA...A)

Choose value of C that maximizes
P(C|A1,A2, ..., An)

Equivalent to choosing value of C that maximizes
P(A1, A2, ..., An|C) P(C)



-
Nalve Bayes Classifier



How to Estimate Probabilities from

Data?
Class: P(C) = Nc/N

\ \
Q’O{\& Q’o{\o‘b ‘O\}o\*‘" . e.d., P(No)=7/1_0,
2 oo“’o N P(Yes) = 3/10

Tid Refund Marital Taxable

Status Income Evade
1 |Yes |Single [125K  |Ne For discrete attributes:
2 No Married 100K No ] ]
3 [No Single 70K No P(AI | Ck) = |A|k|/ [\rC
pak Yes Married 120K No
5 No Divorced |95K Yes . _
6 No Married 60K No Where |A|k| |S number Of
7 |Yes  |Divorced |220K  |No Instances having attribute Ai
8 |No Single | 85K [¥es and belongs to class Ck
9 No Married 75K No
10 |No Single 90K Yes Examp|es:

PIQtatiic=NarriadINIA — A/7



How to Estimate Probabilities from

Data? |
For continuous attributes:

Discretize the range into bins

one ordinal attribute per bin

violates independence assumption
Two-way split: (A<v)or (A>v)

choose only one of the two splits as new attribute
Probability density estimation:

Assume attribute follows a normal distribution

Use data to estimate parameters of distribution
(e.g., mean and standard deviation)

Once probability distribution is known, can use it to estimate the
conditional probability P(Ai|c)



How to Estimate Probabilities from
Data”?

Tid Refund Marital
Status

= © 0o N O O »h WODN =

Single
Married
Single
Married
Divorced
Married
Divorced
Single
Married

Single

Taxable
Income

125K
100K
70K
120K
95K
60K
220K
85K
75K
90K

No
No

No

Yes

No

Yes

Yes

Normal distribution:

P(4|¢) Jlr?e

One for each (Ai,ci) pair

For (Income, Class=No):
If Class=No

P(Income 120| No)

sample mean = 110

1 - ‘126 1oy

ganace = 3979072
(54.54)



Example of Naive Bayes Classifier

Given a Test Record:

X (Refund No,Married,Income 120K)

naive Bayes Classifier.

P(Refund=Yes|No) = 3/7
P(Refund=No[No) = 4/7
P(Refund=Yes|Yes) =0
P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/
P(Marital Status= D|vorced|No)
P(Marital Status= Marr|ed|No) =z
P(Marital Status=Single|Yes) = 2
P(Marital Status= Divorced|Yes) 7

P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: ~ sample mean=110
sample variance=2975

If class=Yes.  sample mean=90
sample variance=25

* P(X|Class=No) = P(Refund=No|Class=No)
P(Married| Class=No)
P(Income=120K| Class=No)

=4/7 4/7 0.0072 = 0.0024

* P(X|Class=Yes) = P(Refund=No| Class=Yes)
P(Married| Class=Yes)
P(Income=120K| Class=Yes)
=1 0 1.2 10-9=0

Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)
=> Class = No



Nalve Bayes Classifier

If one of the conditional probabillity is zero, then
the entire expression becomes zero

Probability estimation:
N

Original : P(A, |C) il
S (4;1€) N Ni: number of attribute
NC i values for attribute Ai
Laplace: P(A4. | C) H p: prior probability

¢ : m: parameter

m - estimate : P(4, | C) JZVH

m
m



Example of Naive Bayes Classifier

Name Give Birth CanFly |[Live in Water| Have Legs Class .
human yes no no yes mammals A: att”bUteS
python no no no no non-mammals
salmon no no yes no non-mammals M: mammals
whale yes no yes no mammals
frog no no sometimes |yes non-mammals N: non-mammails
komodo no no no yes non-mammals
bat yes yes no yes mammals 6 6 2 2
pigeon no yes no yes non-mammals P(A | M) B B B B 006
cat yes no no yes mammals 7 7 7 7
leopard shark |yes no yes no non-mammals
turtle no no sometimes |yes non-mammals 1 10 3 4
penguin no no sometimes |yes non-mammals P(A | N) B N | 00042
porcupine yes no no yes mammals 1 3 1 3 1 3 1 3
eel no no yes no non-mammals 7
salamander |no no sometimes |yes non-mammals
gila monster |no no no yes non-mammals P(A | M)P(M) 006 i 0021
platypus no no no yes mammals 20
owl no yes no yes non-mammals 1 3
dolphin yes no yes no mammals P(A | N)P(N) O 004 | O 0027
eagle no yes no yes non-mammals ) 20 )
Give Birth Can Fly |Live in Water| Have Legs Class P(AlM)P(M) > P(Al

yes no yes no ? N)P(N)

=> Mammals




-
Implementation details



Naive Bayes (Summary)

Robust to isolated noise points

Handle missing values by ignoring the instance
during probability estimate calculations

Robust to irrelevant attributes

Independence assumption may not hold for some
attributes

Use other techniques such as Bayesian Belief Networks
DDNIN



Generative vs Discriminative

models |
* Naive Bayes is a type of a generative model

- Generative process:
* First pick the category of the record

* Then given the category, generate the attribute values from the

distribution of the category !

<—1 Vv —>

* Conditional independence given C



Generative vs Discriminative

models | o
Logistic Regression and SVM are discriminative

models

The goal is to find the boundary that discriminates
between the two classes from the training data

In order to classify the language of a document,
you can

Either learn the two languages and find which is more
likely to have generated the words you see

Or learn what differentiates the two languages.



An Introduction to Support Vector

gu Machines




Outline

= History of support vector machines (SVM)

= Two classes, linearly separable
= What is a good decision boundary?

= Two classes, not linearly separable

= How to make SVM non-linear: kernel trick
= Demo of SVM

= Epsilon support vector regression (e-SVR)
= Conclusion



History of SVM

= SVM is a classifier derived from statistical

learning theory by Vapni
= SVM was first introduced
= SVM becomes famous w

K and Chervonenkis
in COLT-92

nen, using pixel maps

as input, it gives accuracy comparable to
sophisticated neural networks with elaborated
features in a handwriting recognition task

= Currently, SVM is closely

related to:

= Kernel methods, large margin classifiers, reproducing
kernel Hilbert space, Gaussian process



Two Class Problem: Linear Separable
Case

= Many decision

boundaries can
@ Class 2

", ©® separate these two
- @ g classes
= ., @ = Which one should

= = we choose?




Example of Bad Decision Boundaries

Class 1

@ Class 2

Class 1

@ Class 2




Good Decision Boundary: Margin
Should Be Large

=" The decision boundary should be as far away
from the data of both classes as possible
= We should maximize the margin, m

W 2
m — ———
( [|w ]
“ @)
“@Classz
WTx—I-b: 1
- 0
Class 1
T Iy 4+b=0
w xX+b= -1 WX+ b=




The Optimization Problem

"let {x1, ..., xn} be our data set and let yi [
{1,-1} be the class label of xi

= The decision boundary should classify all points
correctly O y;(wlx, +b) > 1, Vi
= A constrained optimization problem

1
2
subject to y;(wlx; +b) > 1 Vi

Minimize =||w||?



The Optimization Problem

= \We can transform the problem to its dual

n 1 n
MmaxX. W(a) = Z Q; — 5 Z OéiOéjyiij;;er
i=1 i=1,j=1
n
subject to a; >0, > oy, =0
i=1
=" This is a quadratic programming (QP) problem

" Global maximum of ai can always be found
n

=" w can be recovered by W = Z QY X
i=1



Characteristics of the Solution

= Many of the ai are zero
"w is a linear combination of a small number of data
= Sparse representation

= Xi with non-zero ai are called support vectors (SV)

" The decision boundary is determined only by the SV

"let § (J=1, ..., S) be the indices of the s support
vectors. We can write w — ?:1 Yt Xt

= For testing with a new data z
= Compute wiz 4+ b = >E 10yt (Xt z) +b and
classify z as class 1 if the sum is p05|t|ve and class 2
otherwise




A Geometrical Interpretation

Class 2
., a10=0
a 8;9.6 o
\ '~. /
a7=0
" a2=0
a5=0 * ©
L] @

® a1=0.8
aégo
) “owlx 4 b
a3=0 T
Class 1 W X+ b=




Some Notes

=" There are theoretical upper bounds on the error
on unseen data for SVM
" The larger the margin, the smaller the bound
" The smaller the number of SV, the smaller the bound

= Note that in both training and testing, the data
are referenced only as inner product, xTy

= This is important for generalizing to the non-linear
case




How About Not Linearly Separable

= \We allow “error” &i in classification

Class 2

. O
‘00" "
L]
L]
B wix+b=1
T -
Class 1 W' X+ b=




Soft Margin Hyperplane

= Define €i=0 if there is no error for xi
= &i are just “slack variables” in optimization theory
(wix; +b>1-¢ y; =1

WX@"‘bS_l_l'gz y; = —1
& >0 Vi

= \We want to minimize 3wl + O &
= C: tradeoff parameter between error and margin
= The optimization problem becomes
Minimize 5||w||2 + C X1 1 &

subject to y,(wix; +b)>1—-¢;, & >0

7\




The Optimization Problem

" The dual of the problem is

n 1 n
MmaxX. W(a) = Z oy — 5 Z OéiOéjyiij;;er
i=1 i=1,j=1
n
subject to C > a; >0, ) ayy; =0
i=1

=w is also r.ecovered a§ N .Z?:l at Yt Xt
=" The only difference with the linear separable

case is that there is an upper bound Con ai

= Once again, a QP solver can be used to find ai



Extension to Non-linear Decision
Boundary

= Key idea: transform Xxi to a higher dimensional
space to “"make life easier”
= Input space: the space xi are in
" Feature space: the space of ¢(xi) after transformation

= Why transform?

" | inear operation in the feature space is equivalent to
non-linear operation in input space

" The classification task can be “easier” with a proper
transformation. Example: XOR




Extension to Non-linear Decision
Boundary

= Possible problem of the transformation
" High computation burden and hard to get a good
estimate
=" SVM solves these two issues simultaneously
= Kernel tricks for efficient computation
= Minimize ||w||2 can lead to a “good” classifier

Lo\ o, .
%) o) @)

(K') )\ @) ao)
— T |m )

gm) \ %)
gm)

Feature space

)

Input space



Example Transformation

= Define the kernel function K (x,y) as

K(x,y) = (1 4+ z1y1 + 70y2)?
= Consider the following transformation

6(|35 ) = (1,V221, V212,23, 23, V22122)
s(| 73 ]) = (1, V21, V202,43, ¥3, V2y192)

(@[55 ), ([ ])) = (1 + 2191 + 22y2)°

= K(x,y)
=" The inner product can be computed by K
without going through the map ¢(.)




Kernel Trick

= The relationship between the kernel function Kand
the mapping ¢(.) is
K(x,y) = (¢(x), #(y))

= This is known as the kernel trick

= In practice, we specify K, thereby specifying ¢(.)
indirectly, instead of choosing ¢(.)

= Intuitively, K (X,y) represents our desired notion of

similarity between data x and y and this is from our
prior knowledge

= K (X,y) needs to satisfy a technical condition
(Mercer condition) in order for ¢(.) to exist



Examples of Kernel Functions

= Polynomial kernel with degree d
K(x,y) = (xly +1)¢
= Radial basis function kernel with width o
K(x,y) = exp(—||x — y[|?/(202))
" Closely related to radial basis function neural networks
= Sigmoid with parameter kK and 6
K(x,y) = tanh(kx!y + 6)
= Tt does not satisfy the Mercer condition on all k and 6

= Research on different kernel functions in different
applications is very active



Example of SVM Applications:
Handwriting Recognition

3 | omput Zv. kX x)+b

() - (-)}]  dot product (B(x) B(x )= k(x,x)
"
@(xz)l P(x) iD(x mapped vectors ®(x), ®(x)
A
4.' 4 support vectors X, ... X,

1 I test vector x




Modification Due to Kernel Function

= Change all inner products to kernel functions
= For training,

max. W(a) = ) ai—5 ), aiogyiyX;X;
Original 1=1 ;il:l,jzl
subject to C > a; >0, > oyy; =0
i=1
n 1 n
With kermel A% W) = > 4= > oy K (x4, %)
function 1=1 i=1,7=1

n
subject to C' > a; >0, > oyy; =0
i=1



Modification Due to Kernel Function

= For testing, the new data z is classified as class
1if £=0, and as class 2 if <0

W — Z Oét.yt.Xt.

Original j=1
f—W Zz+ b= Zatytxtz—l-b
)=
W — CYt t; t
With kernel Z Y ¢( )

function
f= < ¢(Z) + b= Z oyt K (xe5,2) + b

J=



Example

= Suppose we have 5 1D data points
nx1=1, x2=2, x3=4, x4=5, x5=6, with 1, 2, 6 as class
land4,5asclass 2 yl=1, y2=1, y3=-1, y4=-1,
y5=1
= \We use the polynomial kernel of degree 2
= K(X,y) = (xy+1)2
"Cissetto 100

lWe firct Flnrl ~i /l— E\ 21V,
2
Z QX — < Z Z 87 jyzyj<$z 1)
7, 11=1 5

subject to 100 > «; > 0, )  a;y; =0
i=1



Example

= By using a QP solver, we get
"01=0, a2=2.5, a3=0, a4=7.333, a5=4.833
= Note that the constraints are indeed satisfied
" The support vectors are {x2=2, x4=5, xX5=6}

® The discriminant function is

F(y) = 2.5(1)(2y + 1)% + 7.333(=1) (5y + 1)2 4 4.833(1)(6y 4+ 1)2 + b
= 0.6667z° — 5.333z + b

= b is recovered by solving f(2)=1 or by f(5)=-1 or
by f(6)=1, as x2, x4, x5 lie Onyz(W ¢(z) +b) =1

‘I aive b=9

f(y) = 0.6667x° — 5.333x 4+ 9




Example

Value of discriminant function

class1 class 2 class 1




Multi-class Classification

= SVM is basically a two-class classifier

=" One can change the QP formulation to allow
multi-class classification

= More commonly, the data set is divided into two
parts “intelligently” in different ways and a
separate SVM is trained for each way of division

= Multi-class classification is done by combining
the output of all the SVM classifiers
= Majority rule
" Error correcting code
" Directed acyclic graph



Software

= A list of SVM implementation can be found at
http://www.kernel-machines.org/software.html

= Some implementation (such as LIBSVM) can
handle multi-class classification

= SVMLight is among one of the earliest
implementation of SVM

= Several Matlab toolboxes for SVM are also
available




Summary: Steps for Classification

= Prepare the pattern matrix
= Select the kernel function to use

= Select the parameter of the kernel function and
the value of C

" You can use the values suggested by the SVM
software, or you can set apart a validation set to
determine the values of the parameter

= Execute the training algorithm and obtain the ai

= Unseen data can be classified using the ai and
the support vectors



Demonstration

= Iris data set
" Class 1 and class 3 are "merged” in this demo



Strengths and Weaknesses of SVM

= Strengths

" Training is relatively easy
= No local optimal, unlike in neural networks

= Tt scales relatively well to high dimensional data

* Tradeoff between classifier complexity and error can
be controlled explicitly

= Non-traditional data like strings and trees can be used
as input to SVM, instead of feature vectors

= \Weaknesses
" Need a “good” kernel function




Epsilon Support Vector Regression
(e-SVR)

= | inear regression in feature space

= Unlike in least square regression, the error
function is e-insensitive loss function
= Intuitively, mistake less than ¢ is ignored
" This leads to sparsity similar to SVM

g-insensitive loss function Square loss function

4 Penalty t Penalty

Value off
Value off target

—€ 3 target




Epsilon Support Vector Regression

(e-SVR)

{ul, ..., un}, we

= Given: a data set {x1, ..., Xxn} with target values

want to do e-SVR

=" The optimization problem is

1

Min —
2

subject to «

[w][* 4+ C > (& + &)
i=1

/

ui —wlix; —b<e+¢
wixi+b—u; <et g

= Similar to SVM, this can be solved as a quadratic
programming problem



Epsilon Support Vector Regression
(e-SVR)

= C'is a parameter to control the amount of
influence of the error

=" The V2||w]||2 term serves as controlling the
complexity of the regression function
= This is similar to ridge regression

= After training (solving the QP), we get values of
ai and ai*, which are both zero if xi does not
contribute to the error function

= For a new data z,
f(z) =) (ay; —of JK(x¢;,2) + b
—

J




Other Types of Kernel Methods

= A lesson learnt in SVM: a linear algorithm in the
feature space is equivalent to a non-linear
algorithm in the input space

= Classic linear algorithms can be generalized to
its non-linear version by going to the feature
space

= Kernel principal component analysis, kernel
independent component analysis, kernel canonical
correlation analysis, kernel k-means, 1-class SVM are
some examples




Conclusion

=" SVM is a useful alternative to neural networks

= Two key concepts of SVM: maximize the margin
and the kernel trick

= Many active research is taking place on areas
related to SVM

= Many SVM implementations are available on the
web for you to try on your data set!



Resources

= http://www.kernel-machines.org/
nttp://www.support-vector.net/

= http://www.support-vector.net/icml-tutorial.pdf

= http://www.kernel-machines.org/papers/tutorial-ni
= http://www.clopinet.com/isabelle/Projects/SVM/ap



http://www.kernel-machines.org/
http://www.support-vector.net/
http://www.support-vector.net/icml-tutorial.pdf
http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
http://www.clopinet.com/isabelle/Projects/SVM/applist.html

K-MEANS
CLUSTERING




What is clustering?

® Clustering is the classification of objects into
different groups, or more precisely, the
partitioning of a data set into subsets
(clusters), so that the data in each subset
(ideally) share some common trait - often
according to some defined distance measure.


http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Metric_(mathematics)

Types of clustering:

1. Hierarchical algorithms: these find successive clusters
using previously established clusters.

1. Agglomerative ("bottom-up"): Agglomerative algorithms
begin with each element as a separate clusterand  merge
them into successively larger clusters.

2. Divisive ("top-down"): Divisive algorithms begin with  the
whole set and proceed to divide it into successively smaller
clusters.

2. Partitional clustering: Partitional algorithms determine all
clusters at once. They include:

K-means and derivatives
Fuzzy c-means clustering
QT clustering algorithm




Common Distance measures:

® Dijstance measure will determine how the similarity of two
elements is calculated and it will influence the shape of the
clusters.

They include:

1. The Euclidean distance (also called 2-norm distance) is
given by:

dix,y)= E Xi— W
2. The Manhattan distance (also called taxicab norm or 1-
norm) is given by:



http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Manhattan_distance

3.The_maximum norm is given by:

A(x, ¥)=max| xi.— ¥
V) =1ma |
4. The Mahalanobis distance corrects data for
different scales and correlations in the variables.

5. Inner product space: The angle between two
vectors can be used as a distance measure when
clustering high dimensional data

6. Hamming distance (sometimes edit distance)
measures the minimum number of substitutions
required to change one member into another.



http://en.wikipedia.org/wiki/Maximum_norm
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Inner_product_space
http://en.wikipedia.org/wiki/Hamming_distance

K-MEANS CLUSTERING

® The k-means algorithm is an algorithm to cluster
n objects based on attributes into k partitions,
where k < n.

® |tis similar to the
expectation-maximization algorithm for mixtures of
Gaussians in that they both attempt to find the
centers of natural clusters in the data.

® |t assumes that the object attributes form a
vector space.


http://en.wikipedia.org/wiki/Data_clustering
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Expectation-maximization_algorithm
http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Vector_space

® An algorithm for partitioning (or clustering) N
data points into K disjoint subsets S;
containing data points so as to minimize the
sum-of-squares cnterlon

%)

=1 nes
where xn is a vector representing the the nth

data point and uj is the geometric centroid of
the data points in ;.

—


http://mathworld.wolfram.com/GeometricCentroid.html

® Simply speaking k-means clustering is an
algorithm to classify or to group the objects
based on attributes/features into K number of
group.

® K is positive integer number.

® The grouping is done by minimizing the sum
of squares of distances between data and the
corresponding cluster centroid.



How the K-Mean Clustering
algorithm works?

/ Number of f

cluster K

-

Centroid

¥ ¢
Distance objects to
centroids

L 4 i

Grouping based on
minimum distance




¢ Step 1: Begin with a decision on the value of k =
number of clusters .

® Step 2: Put any initial partition that classifies the
data into k clusters. You may assign the
training samples randomly,or systematically
as the following:

1.Take the first k training sample as single-
element clusters

2. Assign each of the remaining (N-k) training
sample to the cluster with the nearest centroid.
After each assignment, recompute the centroid of
the gaining cluster.




® Step 3: Take each sample in sequence and
compute its distance from the centroid of
each of the clusters. If a sample is not
currently in the cluster with the closest
centroid, switch this sample to that cluster
and update the centroid of the cluster
gaining the new sample and the cluster
losing the sample.

® Step 4 . Repeat step 3 until convergence is
achieved, that is until a pass through the
training sample causes no new assignments.



http://people.revoledu.com/kardi/tutorial/Similarity/index.html

A Simple example showing the
implementation of k-means algorithm

Individual Variable 1 Variable 2

1 1.0 1.0
2 1.5 2.0
3 3.0 4.0
al 5.0 7.0
5 3.5 5.0
6 4.5 5.0
! 3.5 4.5




Step 1:

Initialization: Randomly we choose following two centroids
(k=2) for two clusters.

In this case the 2 centroid are: m1=(1.0,1.0) and
m2=(5.0,7.0).

Individual WVariable 1 “ariabhle 2

1 1.0 1.0
' 1.5 < 0
3 3.0 4.0
: 5.0 [y
= 3.5 5.0
L] 4.5 5.0
[ 3.5 4.5

Individual Mean Vector
Group 1 1 (1.0, 1.0)
Group 2 4 (5.0, 7.0)




Step 2:

® Thus, we obtain two clusters
containing:

{1,2,3} and {4,5,6,7}.
® Their new centroids are:

|

m=(2(1.0+15+ 3.D]%{1.EI+ 2.0+4.0))=(1.83.2.33)

l .. © e a -
m:=|211~:1.EI—3.:—+.:1—J.:

"
#

=(4.125 38)

-.%[?.u:u+5.n+ 50+4.5))

nowiiual | Cenfrold 1 | Cenirod 2
1 d (3
2015, 401 1Nl .10
3 .61 381
- 1.1 0
5 4.7 L5
5 531 L0
7 4.31 L9

dim = 1.0-15F 41.0-2.0F =1.12

d(m, 2= 5.0-15F 47.0-20F =6.10




Step 3:

® Now using these centroids
we compute the Euclidean
distance of each object, as
shown in table.

® Therefore, the new
clusters are:

{1,2} and {3,4,5,6,7}

® Next centroids are:
m1=(1.25,1.5) and m2 =
(3.9,5.1)

Individual | Centroid 1 | Centroid 2
| 157 5.2
. 047 428
) 214 1.78
4 564 .84
§ 3.15 0.73
i 178 0.54
7 774 1.08




® Step 4 .

The clusters obtained are:

{1,2} and {3,4,5,6,7}

® Therefore, there is no
change in the cluster.

® Thus, the algorithm comes
to a halt here and final

result consist of 2 clusters
{1,2} and {3,4,5,6,7}.

ndvidual | Centroid 1 | Centroid 2
1 0.58 0.0z
2 [. 56 28
3 105 142
1 il 2.0
i 4.16 041
i 4.78 0.61
7 3.5 0.7




PLOT




(with K=3)

ndwvidual {my=1|my=2|my=3 | cluster
0|1 161
i 2 0 | 25 z
3 i ]
i 21 610 | 3| | 2
5 P 1. B I
i G I O 1
T a0 0oy 2

custenng with initil czniroids (1, 2, 3)

Step 1

[

nrvidual | | | cluster
(1.0, 1.00 (1.5, 200 i28.5.1)
1 0 1.11 5.2 1
z 112 0 38 2
3 381 25 1.4 3
- 721 8.10 2.0 3
d 472 161 0.41 3
i 5.4 1.4 081 3
7 430 10 0.72 3
Step 2




PLOT

)
e,
!__.f 1- &
o i
oy =)
-
AL
....‘u".l Y Y
i 3 d 3




Real-Life Numerical Example

of K-Means Clustering

We have 4 medicines as our training data points object

and each medicine has 2 attributes. Each attribute
represents coordinate of the object. We have to
determine which medicines belong to cluster 1 and
which medicines belong to the other cluster.

Object

Attributel
weight index

X):

Attribute 2 (Y): pH

Medicine A

1

1

Medicine B

2

1

Medicine C

4

3

Medicine D




Step 1:

Initial value of
centroids : Suppose
we use medicine A and
medicine B as the first
centroids.

Let and c1 and c2

denote the coordinate
of the centroids, then
c1=(1,1) and c2=(2,1)

attribute 2 (Y ): pH

= im —  im k3 M L3 h = I
1 1 1

iteration 0

"""""""""""""""""""""""""""""""

"""""""""""""""""""""""""""""""

.................................................

attribute 1 (X): weight index




Objects-Centroids distance : we calculate the
distance between cluster centroid to each object.
Let us use Euclidean distance, then we have
distance matrix at iteration O is

. [m 1 3861 5} e, =(11) group—1

1 0 283 424
A 5 C D

{1 2 4 3 } X

1 1 3 4 i

Each column in the distance matrix symbolizes the
object.

The first row of the distance matrix corresponds to the
distance of each object to the first centroid and the
second row is the distance of each object to the second
centroid.

For example, distance from medicine C = (4, 3) to the
first centroid «=00 is, and its distance to the
second centroid is , =) IS etc.

¢, =i(2,1) growp-2


http://people.revoledu.com/kardi/tutorial/Similarity/EuclideanDistance.html

Step 2:

® Objects clustering : We
assign each object based
on the minimum distance.

® Medicine A is assigned to
group 1, medicine B to
group 2, medicine C to
group 2 and medicine D to
group 2.

® The elements of Group
matrix below is 1 if and
only if the object is
assigned to that group.

‘ {1 00 D} gratp — 1

o1 1 1
A F C D

granuy — 2

attribute 2 (Y): pH

= tm = im k3 M L EM f= m
1 1

iteration 1

"""""""""""""""""""""""""""""

""""""""""""""""""

..............

"""""""""""""""""""""""""""""

"""""""""""""""""""""""""""""

4

h

attribute 1 (X): weight index




® |teration-1, Objects-Centroids distances :| The
next step is to compute the distance of all
objects to the new centroids.

® Similar to step 2, we have distance matrix at
iteration 1 is

Dl

314 236 047 189 :jz{%,%j graup — 2
4 5 C D

1 2 4 5 | X
11 3 4 | F

01 361 5} 6, =(11) group-1



® |teration-1, Objects
clustering:Based on the new
distance matrix, we move the
medicine B to Group 1 while
all the other objects remain.

The Group matrix is shown

below iteration 2

_.ﬁ..
L ) |

T
1

G]':l 1 0 0 graup — 1
o o 1 1

A F O LD

¢ |teration 2, determine
centroids: Now we repeat step
4 to calculate the new centroids
coordinate based on the
clustering of previous iteration.
Group1 and group 2 both has
two members, thus the new

o
[y |

SO — &

[
[ ) | [
1

F-a
1

—
T
L

attribute 2 (Y ): pH

o
n

—_

L
—_
[
T
o
Lm

centroids are«=-—2=0:b

445 3+4 L a1 . - :
ande === attribute 1 (X): weight index




® |teration-2, Objects-Centroids distances :
Repeat step 2 again, we have new distance

matrix at iteration 2 as

, [05 05 320 461 =111
1430 354 071 071] ¢, =(41,3Y) group-2



* |teration-2, Objects clustering: Again, we
assign each object based on the minimum

distance.

GE

]

1 0 0
00 1

A F C D

grong — |

ErOLUp — ¢

® \We obtain result that ¢*=¢' . Comparing the

grouping of last iteration and this iteration reveals
that the objects does not move group anymore.

® Thus, the computation of the k-mean clustering
has reached its stability and no more iteration is

needed..




We get the final grouping as the results as:

Object Featurel(X): Feature2 Group
weight index (Y): pH (result)
Medicine A 1 1 1
Medicine B 2 1 1
Medicine C 4 3 2
Medicine D 5 4 2




K-Means Clustering Visual Basic Code

Sub kMeanCluster (Data() As Variant, numCluster As Integer)

" main function to cluster data into k number of Clusters

"input:

'+ Data matrix (0 to 2, 1 to TotalData);

'Row 0 = cluster, 1 =X, 2=Y; data in columns

"+ numCluster: number of cluster user want the data to be clustered
'+ private variables: Centroid, TotalData

"ouput:

' 0) update centroid

' 0) assign cluster number to the Data (= row 0 of Data)

Dim i As Integer

Dim j As Integer

Dim X As Single

Dim Y As Single

Dim min As Single
Dim cluster As Integer
Dim d As Single

Dim sumXY()

Dim isStillMoving As Boolean

isStillMoving = True

if totalData <= numCluster Then

'only the last data is put here because it designed to be interactive
Data(0, totalData) = totalData ' cluster No = total data
Centroid(1, totalData) = Data(1, totalData) ' X
Centroid(2, totalData) = Data(2, totalData) ' Y

Else

‘calculate minimum distance to assign the new data
min = 10 * 10 'big number

X = Data(1, totalData)

Y = Data(2, totalData)

Fori =1 To numCluster




Do While isStillMoving

" this loop will surely convergent

‘calculate new centroids

"1 =X, 2=Y, 3=count number of data

ReDim sumXY(1 To 3, 1 To numCluster)

Fori =1 To totalData

sumXY(1, Data(0, i)) = Data(1, i) + sumXY(1, Data(0, i))
sumXY(2, Data(0, i)) = Data(2, i) + sumXY(2, Data(0, i))
Data(O0, i))

sumXY(3, Data(0, i)) = 1 + sumXY(3, Data(0, i))

Next i

Fori =1 To numCluster

Centroid(1, i) = sumXY(1, i) / sumXY(3, i)

Centroid(2, i) = sumXY(2, i) / sumXY(3, i)

Next i

‘assign all data to the new centroids

isStillMoving = False

Fori =1 To totalData

min = 10 * 10 'big number
X =Data(1, i)

Y = Data(2, i)

For j =1 To numCluster

d = dist(X, Y, Centroid(1, j), Centroid(2, j))
If d < min Then

min =d

cluster = j

End If

Next j

If Data(0, i) <> cluster Then
Data(0, i) = cluster
isStillMoving = True

End If

Next i

Loop

End If

End Sub




Weaknesses of K-Mean Clustering

When the numbers of data are not so many, initial
grouping will determine the cluster significantly.

The number of cluster, K, must be determined before
hand. Its disadvantage is that it does not yield the same
result with each run, since the resulting clusters depend
on the initial random assignments.

We never know the real cluster, using the same data,
because if it is inputted in a different order it may
produce different cluster if the number of data is few.

It is sensitive to initial condition. Different initial condition
may produce different result of cluster. The algorithm
may be trapped in the Jocal optimum.




Applications of K-Mean
Clustering

® |t is relatively efficient and fast. It computes result
at O(tkn), where n is number of objects or points, k
IS number of clusters and t is number of iterations.

® k-means clustering can be applied to machine
learning or data mining

® Used on acoustic data in speech understanding to
convert waveforms into one of k categories (known
as Vector Quantization or Image Segmentation).

® Also used for choosing color palettes on old
fashioned graphical display devices and Image
Quantization.




CONCLUSION

® K-means algorithm is useful for undirected
knowledge discovery and is relatively simple.
K-means has found wide spread usage in lot
of fields, ranging from unsupervised learning
of neural network, Pattern recognitions,
Classification analysis, Artificial intelligence,
Image processing, machine vision, and many
others.
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